MATH 3304 - FINAL EXAM SUMMER 2015

Name:

Thursday 30 July 2015
Instructor: Tom Cuchta

Instructions:

- Show all work, clearly and in order, if you want to get full credit. If you claim something is true you must show work backing up your claim. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible to ensure full credit.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point.
- Good luck!

1. (30 points) Find an explicit solution of the initial value problem $y^{\prime}=\frac{x^{2}}{y} ; y(0)=-1$.

Solution: We use separation of variables to write

$$
\int y d y=\int x^{2} d x
$$

so

$$
\frac{1}{2} y^{2}=\frac{1}{3} x^{3}+C
$$

Isolate y and take square roots to get

$$
y= \pm \sqrt{\frac{2}{3} x^{3}+c} .
$$

Since our initial condition is $y(0)=-1$ we take the negative solution and apply the initial conditions to see

$$
-1=y(0)=-\sqrt{C} .
$$

Hence $1=C$ and we have derived the explicit solution

$$
y(x)=-\sqrt{1+\frac{2}{3} x^{3}}
$$

2. (30 points) Find the general solution of $y^{\prime}=4-\frac{2 y}{50+t}$.

Solution: First rewrite the equation in standard form:

$$
y^{\prime}+\frac{2}{50+t} y=4
$$

so it is clear that the integrating factor is

$$
\mu=\exp \left(\int \frac{2}{50+t} d t\right)=e^{2 \log (50+t)}=(50+t)^{2}
$$

Multiply by the integrating factor to get

$$
(50+t)^{2} y^{\prime}+2(50+t) y=4(50+t)^{2},
$$

and the left hand side factors yielding

$$
\frac{d}{d t}\left[(50+t)^{2} y\right]=4(50+t)^{2} .
$$

Integration with respect to t shows

$$
(50+t)^{2} y=\int 4(50+t)^{2} d t=\frac{4}{3}(50+t)^{3}+C
$$

Therefore the general solution is

$$
y(t)=\frac{4}{3}(50+t)+\frac{C}{(50+t)^{2}} .
$$

Note: Wolframalpha's solution expands $(50+t)^{3}$ to $t^{3}+150 t^{2}+7500 t+125000$ and does not cancel $\frac{(50+t)^{3}}{(50+t)^{2}}$ as we did.
3. (30 points) Solve $4 y^{\prime \prime}+y=2 \sec \left(\frac{t}{2}\right)$ on the interval $-\pi<t<\pi$.

Solution: First solve the homogeneous equation $4 y^{\prime \prime}+y=0$ by observing the characteristic equation $4 r^{2}+1=0$ and solving it to get $r= \pm \frac{i}{2}$. Therefore the homogeneous solution is

$$
y_{h}(t)=c_{1} \cos \left(\frac{t}{2}\right)+c_{2} \sin \left(\frac{t}{2}\right) .
$$

We will write $y_{1}(t)=\cos \left(\frac{t}{2}\right)$ and $y_{2}(t)=\sin \left(\frac{t}{2}\right)$. We will proceed using variation of parameters. First recall that variation of parameters is only defined for an equation in standard form (i.e. coefficient of $y^{\prime \prime}$ must be 1), so multiply our DE by $\frac{1}{4}$ to get

$$
y^{\prime \prime}+\frac{1}{4} y=\frac{1}{2} \sec \left(\frac{t}{2}\right) .
$$

First compute the Wronskian

$$
W\left\{y_{1}, y_{2}\right\}(t)=\operatorname{det}\left[\begin{array}{cc}
\cos \left(\frac{t}{2}\right) & \sin \left(\frac{t}{2}\right) \\
-\frac{1}{2} \sin \left(\frac{t}{2}\right) & \frac{1}{2} \cos \left(\frac{t}{2}\right)
\end{array}\right]=\frac{1}{2} .
$$

Variation of parameters tells us to assume the particular solution is $y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$ and so compute

$$
u_{1}(t)=-\int \frac{\frac{1}{2} \sin \left(\frac{t}{2}\right) \sec \left(\frac{t}{2}\right)}{W\left\{y_{1}, y_{2}\right\}(t)} d t=-\int \tan \left(\frac{t}{2}\right) d t=2 \log \left(\cos \left(\frac{t}{2}\right)\right)
$$

Now compute

$$
u_{2}(t)=\int \frac{\frac{1}{2} \cos \left(\frac{t}{2}\right) \sec \left(\frac{t}{2}\right)}{W\left\{y_{1}, y_{2}\right\}(t)}=t
$$

Hence the particular solution of the differential equation is

$$
y_{p}(t)=2 \log \left(\cos \left(\frac{t}{2}\right)\right) \cos \left(\frac{t}{2}\right)+t \sin \left(\frac{t}{2}\right) .
$$

Therefore the general solution of the differential equations is

$$
y(t)=c_{1} \cos \left(\frac{t}{2}\right)+c_{2} \sin \left(\frac{t}{2}\right)+2 \log \left(\cos \left(\frac{t}{2}\right)\right) \cos \left(\frac{t}{2}\right)+t \sin \left(\frac{t}{2}\right) .
$$

4. (30 points) Find the general solution of $y^{(4)}-y^{\prime \prime \prime}+y^{\prime \prime}=0$.

Solution: The characteristic equation associated with this differential equation is

$$
r^{4}-r^{3}+r^{2}=r^{2}\left(r^{2}-r+1\right)=0
$$

We see that $r=0$ is a double root of the equation and the quadratic formula shows that there are complex roots $r=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$. Hence the general solution is

$$
y(t)=c_{1}+t c_{2}+c_{3} e^{\frac{t}{2}} \cos \left(\frac{\sqrt{3}}{2} t\right)+c_{4} e^{\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t\right) .
$$

5. (30 points) Find the solution of the initial value problem

$$
y^{\prime \prime}+y=\delta(t-17) ; y(0)=1, y^{\prime}(0)=0
$$

Solution: Take the Laplace transform of the equation to get

$$
\left(s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)\right)+\mathscr{L}\{y\}=e^{-17 s}
$$

and apply the initial conditions and simplify yielding

$$
\mathscr{L}\{y\}=\frac{e^{-17 s}}{s^{2}+1}+\frac{s}{s^{2}+1} .
$$

Taking inverse Laplace transforms yields

$$
\begin{aligned}
y(t) & =\mathscr{L}^{-1}\left\{\frac{e^{-17 s}}{s^{2}+1}\right\}(t)+\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}(t) \\
& =u_{17}(t) \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}(t-17)+\cos (t) \\
& =u_{17}(t) \sin (t-17)+\cos (t)
\end{aligned}
$$

which is the solution of the DE (note: Wolfram alpha uses $\theta(t-c)$ to denote our function $u_{c}(t)$ and it expresses the soltuion using $\sin (17-t)$ instead of $\sin (t-17))$.
6. (30 points) Use the Laplace transform to solve the integral equation

$$
y(t)+5 \int_{0}^{t} e^{-4(t-\tau)} y(\tau) d \tau=1
$$

Solution: Let $f(t)=e^{-4 t}$ and hence $\mathscr{L}\{f\}=\frac{1}{s+4}$. We may express the integral equation as

$$
y(t)+5(f * y)(t)=1
$$

Taking the Laplace transform and using the convolution theorem on the second term yields

$$
\mathscr{L}\{y\}+5 \frac{\mathscr{L}\{y\}}{s+4}=\frac{1}{s} .
$$

Factor $\mathscr{L}\{y\}$ on the left hand side to get

$$
\left(1+\frac{5}{s+4}\right) \mathscr{L}\{y\}=\frac{1}{s} .
$$

Get a common denominator on the left and simplify to get

$$
\mathscr{L}\{y\}=\frac{s+4}{s(s+9)}
$$

Apply partial fractions to the right hand side to get

$$
\frac{s+4}{s(s+9)}=\frac{5}{9} \frac{1}{s+9}+\frac{4}{9} \frac{1}{s} .
$$

Thus taking the inverse Laplace transform of $\mathscr{L}\{y\}$ yields

$$
y=\frac{5}{9} \mathscr{L}^{-1}\left\{\frac{1}{s+9}\right\}+\frac{4}{9} \mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=\frac{5}{9} e^{-9 t}+\frac{4}{9} .
$$

7. (30 points) Find the solution of the initial value problem

$$
y^{\prime \prime}(t)+4 y(t)= \begin{cases}0 & ; t<\frac{\pi}{2} \\ -8 & ; t \geq \frac{\pi}{2}\end{cases}
$$

with initial conditions $y(0)=2, y^{\prime}(0)=0$.
Solution: We may express the right hand side using the step function $-8 u_{\frac{\pi}{2}}(t)$. This yields the DE

$$
y^{\prime \prime}(t)+4 y(t)=-8 u_{\frac{\pi}{2}}(t)
$$

Take the Laplace transform of this DE to get

$$
\left(s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)\right)+4 \mathscr{L}\{y\}=\frac{-8 e^{-\frac{\pi}{2} s}}{s}
$$

Apply initial conditions and simplify to get

$$
\mathscr{L}\{y\}=-\frac{8 e^{-\frac{\pi}{2} s}}{s\left(s^{2}+4\right)}+\frac{2 s}{s^{2}+4}
$$

Partial fractions yields

$$
\frac{-8}{s\left(s^{2}+4\right)}=\frac{2 s}{s^{2}+4}-\frac{2}{s}
$$

and now take the inverse Laplace transform of $\mathscr{L}\{y\}$ to get

$$
\begin{aligned}
y(t) & =2 \mathscr{L}^{-1}\left\{\frac{s e^{-\frac{\pi}{2} s}}{s^{2}+4}\right\}(t)-2 \mathscr{L}^{-1}\left\{\frac{e^{-\frac{\pi}{2} s}}{s}\right\}(t)+2 \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\} \\
& =2 u_{\frac{\pi}{2}}(t) \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}\left(t-\frac{\pi}{2}\right)-2 u_{\frac{\pi}{2}}(t) \mathscr{L}^{-1}\left\{\frac{1}{s}\right\}\left(t-\frac{\pi}{2}\right)+2 \cos (2 t) \\
& =2 u_{\frac{\pi}{2}}(t) \cos \left(2\left(t-\frac{\pi}{2}\right)\right)-2 u_{\frac{\pi}{2}}(t)+2 \cos (2 t)
\end{aligned}
$$

Since $\cos \left(2\left(t-\frac{\pi}{2}\right)\right)=\cos (2 t-\pi)=-\cos (2 t)$, we may express the solution as

$$
y(t)=-2 u_{\frac{\pi}{2}}(t) \cos (2 t)-2 u_{\frac{\pi}{2}}(t)+2 \cos (2 t) .
$$

Written as a piecewise function, this is

$$
y(t)= \begin{cases}2 \cos (2 t) & ; t<\frac{\pi}{2} \\ -2 & ; t \geq \frac{\pi}{2}\end{cases}
$$

which is the solution of the initial value problem.
8. (35 points) Find real-valued solutions of the initial value problem

$$
\vec{y}^{\prime}=\left[\begin{array}{cc}
0 & -\frac{1}{2} \\
2 & 0
\end{array}\right] \vec{y} ; \vec{y}(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Solution: Assume that $\vec{y}=\vec{k} e^{\lambda t}$. Plugging this into the DE yields the eigenvalue problem

$$
\left[\begin{array}{cc}
0 & -\frac{1}{2} \\
2 & 0
\end{array}\right] \vec{k}=\lambda \vec{k} .
$$

The eigenvalues of this matrix are $\lambda_{1}=i$ and $\lambda_{2}=-i$. We will take the associated eigenvectors to be $\vec{k}^{(1)}=\left[\begin{array}{c}1 \\ -2 i\end{array}\right]$ and $\vec{k}^{(2)}=\left[\begin{array}{c}1 \\ 2 i\end{array}\right]$. Hence

$$
\begin{aligned}
\vec{y}^{(1)}(t) & =\vec{k}^{(1)} e^{\lambda_{1} t} \\
& =\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+i\left[\begin{array}{c}
0 \\
-2
\end{array}\right]\right)(\cos (t)+i \sin (t)) \\
& \left.=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \cos (t)-\left[\begin{array}{c}
0 \\
-2
\end{array}\right] \sin (t)\right)+i\left(\left[\begin{array}{c}
0 \\
-2
\end{array}\right] \cos (t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \sin (t)\right) .
\end{aligned}
$$

The real-valued solutions are

$$
\tilde{\vec{y}}^{(1)}=\operatorname{Re}\left(\vec{y}^{(1)}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cos (t)-\left[\begin{array}{c}
0 \\
-2
\end{array}\right] \sin (t),
$$

and

$$
\tilde{\vec{y}}^{(2)}=\operatorname{Im}\left(\vec{y}^{(1)}\right)=\left[\begin{array}{c}
0 \\
-2
\end{array}\right] \cos (t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \sin (t) .
$$

Hence the general solution is

$$
\vec{y}(t)=c_{1} \tilde{\vec{y}}^{(1)}+c_{2} \tilde{\vec{y}}^{(2)}=c_{1}\left[\begin{array}{c}
\cos (t) \\
2 \sin (t)
\end{array}\right]+c_{2}\left[\begin{array}{c}
\sin (t) \\
-2 \cos (t)
\end{array}\right] .
$$

Apply the initial conditions to see

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\vec{y}(0)=c_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-2
\end{array}\right] .
$$

From this equation we see $c_{1}=1$ and $c_{2}=-1$. Therefore the solution of the initial value problem is

$$
\vec{y}(t)=\left[\begin{array}{c}
\cos (t) \\
2 \sin (t)
\end{array}\right]-\left[\begin{array}{c}
\sin (t) \\
-2 \cos (t)
\end{array}\right]=\left[\begin{array}{c}
\cos (t)-\sin (t) \\
2 \sin (t)+2 \cos (t)
\end{array}\right]
$$

9. (35 points) Find the general solution of the equation

$$
\vec{y}^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right] \vec{y}+\left[\begin{array}{l}
t e^{2 t} \\
t e^{2 t}
\end{array}\right],
$$

given that $\psi(t)=\left[\begin{array}{cc}e^{-3 t} & e^{2 t} \\ -4 e^{-3 t} & e^{2 t}\end{array}\right]$ is a fundamental matrix for the system.
Solution: Let $\vec{g}(s)=\left[\begin{array}{c}s e^{2 s} \\ s e^{2 s}\end{array}\right]$. First compute

$$
\operatorname{det} \psi(t)=e^{-t}+4 e^{-t}=5 e^{-t}
$$

Now compute

$$
\psi^{-1}(s)=\frac{1}{5 e^{-t}}\left[\begin{array}{cc}
e^{2 t} & -e^{2 t} \\
4 e^{-3 t} & e^{-3 t}
\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
4 e^{-2 t} & e^{-2 t}
\end{array}\right]
$$

Hence

$$
\psi^{-1}(s) \vec{g}(s)=\frac{1}{5}\left[\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
4 e^{-2 t} & e^{-2 t}
\end{array}\right]\left[\begin{array}{c}
s e^{2 s} \\
s e^{2 s}
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
0 \\
5 s
\end{array}\right]=\left[\begin{array}{l}
0 \\
s
\end{array}\right] .
$$

Now we use variation of parameters to compute

$$
\begin{aligned}
\vec{y}_{p}(t) & =\psi(t) \int^{t}\left[\begin{array}{l}
0 \\
s
\end{array}\right] d s \\
& =\left[\begin{array}{cc}
e^{-3 t} & e^{2 t} \\
-4 e^{-3 t} & e^{2 t}
\end{array}\right]\left[\begin{array}{c}
0 \\
\frac{t^{2}}{2}
\end{array}\right] \\
& =\frac{t^{2}}{2} e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{aligned}
$$

Therefore the general solution is

$$
\vec{y}(t)=c_{1} e^{-3 t}\left[\begin{array}{c}
1 \\
-4
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{t^{2}}{2} e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Table of Laplace Transforms

$f(t)=\mathscr{L}^{-1}\{F(s)\}$	$F(s)=\mathscr{L}\{f(t)\}$
$e^{a t}$	$\frac{1}{s-a}$
t^{n}	$\frac{n!}{s^{n+1}}$
$\sin (b t)$	$\frac{b}{s^{2}+b^{2}}$
$\cos (b t)$	$\frac{s}{s^{2}+b^{2}}$
$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$
$u_{c}(t) f(t)$	$e^{-c s} \mathscr{L}\{f(t+c)\}(s)$
$e^{c t} f(t)$	$F(s-c)$
$(f * g)(t)$	$F(s) G(s)$
$\delta(t-c)$	$e^{-c s}$
$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\ldots-f^{(n-1)}(0)$

