Exam I
Name: Dr. Grow

1. (25 pts.) (a) Find the general solution in the $x y-p l a n e$ of the partial differential equation

(b) Sketch some of the characteristic curves of the poe (*).
(C) Find the solution of the poe (*) which satisfies

$$
u(x, 0)=x^{4} \quad \text { for }-\infty<x<\infty
$$

$$
[y,-x] \cdot \nabla u=0
$$

$D_{[y,-x]} u=0 \quad \therefore u$ is constant along (characticatic) curves whore tangent at (x, y) is parallel to $[y,-x]$. Thus the characteristic
curves of the poe satisfy $\frac{d y}{d x}=\frac{-x}{y} \Rightarrow y d y=-x d x \Rightarrow \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+c$
$\Rightarrow x^{2}+y^{2}=c_{1} \quad\left(c_{1}=2 c\right)$. These are circles with center at the origin and radius) $\sqrt{c_{1}}$. along the characteristic circles, u is constant; No, on such a curve,

$$
u(x, y(x))=u\left(\sqrt{c_{1}}, y\left(\sqrt{c_{1}}\right)\right)=u\left(\sqrt{c_{1}}, 0\right)=f\left(c_{1}\right)
$$

+16 (a) Therefore, the general solution to ($*$) in the $x y$-plane is $u(x, y)=f\left(x^{2}+y^{2}\right)$ where f is a c^{\prime}-function of a single real variable.
$+3$

$+6$
(c) $x^{4}=u(x, 0)=f\left(x^{2}+0^{2}\right)=f\left(x^{2}\right) \Rightarrow f(t)=t^{2}$ for all $t \geqslant 0$.

Hence the solution of (*) satisfying the condition $u(x, 0)=x^{4}$ for $-\infty<x<\infty$

$$
\text { is } \quad n(x, y)=\left(x^{2}+y^{2}\right)^{2}
$$

Notation: $n(x, t)=$ watical displacement of string at position x and time t
2. (25 pts.) An elastic string is held fixed at the endpoints and plucked. Carefully derive the partial differential equation that governs the motion of the string, assuming that air exerts a resistance at each point of the string which is proportional to the string's velocity at that point.

$f_{\text {ix }} t>0$ and consider the segment of string between x and $x+A x$ applying Newton's second lav of motion $(\vec{F}=m \vec{a})$ to this segment yields
(Horizontal) $\quad 0=-\left|\vec{T}_{1}\right| \cos (\alpha)+\left|\vec{T}_{2}\right| \cos (\beta)$ (Vertical) $\int_{x}^{\text {10 pta to to }} \rho u_{t t}^{x+\Delta s}(\xi, t) d \xi=-\left|\vec{T}_{1}\right| \sin (\alpha)+\left|\vec{T}_{2}\right| \sin (\beta)-\int_{x}^{x+a x} k_{t}(\xi, t) d \xi$ where p is the constant mes demist of the string and k is a positive proportionality conses Observe that $\tan (\alpha)=$ shape of the string at position $x=u_{x}(x, t)$. Thus $\sin (\alpha)=\frac{u_{x}(x, t)}{\sqrt{1+u_{x}^{2}(x, t)}}$ and $\cos (\alpha)=\frac{1}{\sqrt{1+u_{x}^{2}(x, t)}}$. (Similar explosions) hold for β.) Since the sting' deflections are small, $u_{x}^{2} \ll 1$. Using this approximation in (1) yields

$$
\left.0=-\left|\vec{T}_{1}\right| \cdot 1+\left|\vec{T}_{2}\right| \cdot 1 \Rightarrow|\vec{T}|=T=\text { constant (throughout) } \text { strong }\right) \cdot
$$

Ah o, thisappexuination yields in (2):

$$
\int_{x}^{x+\Delta x} \rho u_{t t}(\xi, t) d \xi=T\left[u_{x}(x+\Delta x, t)-u_{x}(x, t)\right]-\int_{x}^{x+\Delta x} k u_{t}(\xi, t) d \xi
$$

Dividing by Δx and letting $\Delta x \rightarrow 0$ produces)

$$
\rho u_{t t}(x, t)=T u_{x x}(x, t)-k_{t}(x, t)
$$

Ie.

$$
\rho u_{t t}-T_{u_{x x}}+k u_{t}=0
$$

(If we doit use the approximation $n_{x}^{2} \ll 1$ and have a variable density $p=\rho(x)$, then the equation of motion is: $\quad\left(x(x) u_{t t}(x, t)-\frac{|\vec{T}(x, t, u)|}{\sqrt{1+u_{x}^{2}(x, t)}} u_{x x}(x, t)+k_{t}(x, t)=0.\right)$
3. (25 pts.) Classify the following partial differential equations as hyperbolic, parabolic, or elliptic, and if possible, find the general solution in the $x y-p l a n e$.
(a) $u_{x x}+4 u_{y y}-4 u_{x y}+25 u=0$
(b) $u_{x x}+u_{x y}+3 u_{y y}+u_{y x}=0$
(a) $B^{2}-4 A C=(-4)^{2}-4(1)(4)=0$ parabolic

The poe is explicable as $\left(\frac{\partial}{\partial x}-2 \frac{\partial}{\partial y}\right)^{2} u+25 u=0$.
Let $\xi=2 x+y$, Thaw the chin mule inglis

$$
\eta=-x+2 y . \quad \frac{\partial}{\partial x}=2 \frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta} \quad \text { and } \frac{\partial}{\partial y}=\frac{\partial}{\partial \xi}+2 \frac{\partial}{\partial \eta} .
$$

Consequently, $\frac{\partial}{\partial x}-2 \frac{\partial}{\partial y}=2 \frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta}-2\left(\frac{\partial}{\partial \xi}+2 \frac{\partial}{\partial \eta}\right)=-5 \frac{\partial}{\partial \eta}$. Therefore, the poe (a) n equivalent to $\left(-\frac{5 \partial}{\partial \eta}\right)^{2} u+25 u=0$

$$
\Rightarrow \quad 25 \frac{\partial^{2} u}{\partial \eta^{2}}+25 u=0 .
$$

By ODE methods, we ace that $\cos (\eta)$ and in (q) are fundamental solution of this equation. Consequently, the solution in the sl-pleme is

$$
u=c_{1}(\overline{3}) \cos (\eta)+c_{2}(\xi) \sin (\eta)
$$

Tunes, the general aroution of (a) in the xy-plane is

$$
u(x, y)=f(2 x+y) \cos (2 y-x)+g(2 x+y) \sin (2 y-x)
$$

where fard g are arbitrary c^{2}-functions of a single real variable.
(b) $B^{2}-4 A C=2^{2}-4(1)(3)=-8<0 \quad$ elliptic
4. (25 pts.) (a) Derive the general solution to
(*)

$$
u_{t t}=c^{2} u_{x x}
$$

in the x t-plane.
(b) Derive a formula for the solution to (*) which satisfies the initial conditions

$$
(* *) \quad u(x, 0)=\phi(x) \text { and } u_{t}(x, 0)=\psi(x)
$$

for $-\infty<x<\infty . \quad(H e r e \psi$ and ϕ are prescribed "sufficiently smooth" functions of a single real variable.)
(c) Write, and simplify as much as possible, the solution to
$u_{t t}=u_{x x}$ in the $x t-p l a n e$ which satisfies $u(x, 0)=e^{-x^{2}}$ and $u_{t}(x, 0)=2 x e^{-x^{2}}$ for $-\infty<x<\infty$.
(d) Sketch profiles of the solution to part (c) for times $t=1$, $t=2$, and $t=3$.

BONUS (10 pts.). Derive a general (nontrivial) relation between ϕ and ψ which will produce a solution to $(*)-(* *)$ consisting solely of a wave traveling to the right along the x-axis.
(a) (*) can he expressed as $\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0$.

Let $\xi=c t+x$, Then the chain rule implies $\frac{\partial}{\partial x}=\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta}$

$$
\begin{aligned}
& \eta=c t-x \cdot \begin{aligned}
& \frac{\partial}{\partial t}= c \frac{\partial}{\partial \xi}+c \frac{\partial}{\partial \eta} . \text { Hence } \\
& \frac{\partial}{\partial t}-c \frac{\partial}{\partial x}=c \frac{\partial}{\partial \xi}+c \frac{\partial}{\partial \eta}-c\left(\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta}\right)=2 c \frac{\partial}{\partial \eta} \\
& \text { and } \frac{\partial}{\partial t}+c \frac{\partial}{\partial x}=c \frac{\partial}{\partial \xi}+c \frac{\partial}{\partial \eta}+c\left(\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta}\right)=2 c \frac{\partial}{\partial \xi} .
\end{aligned} .
\end{aligned}
$$

Consequently, $(*)$ is equivalent to $\left(2 c \frac{\partial}{\partial \eta}\right)\left(2 c \frac{\partial}{\partial \xi}\right) u=0$

$$
\Rightarrow \quad \frac{\partial}{\partial \eta}\left(\frac{\partial u}{\partial \xi}\right)=0
$$

Thus, $\frac{\partial u}{\partial \xi}=c_{1}(\xi)$ and $u=\int c_{1}(\xi) d \xi+c_{2}(\eta)=f(\xi)+g(\eta)$.
she the $x t$-plane, the general solution of $(*)$ is $u(x, t)=f(x+c t)+g(x-c t)$ where f and g are arbitrary c^{2}-functions of a single peal variable. (note, for future reference, that $u_{t}(x, t)=c f^{\prime}(x+c t)-c g^{\prime}(x-c t)$.)
(b) Apply the I.C.'s (k+1 to the gancial nolution of (*) in the $x t$-plane to get:
(1) $\quad \varphi(x)=u(x, 0)=f(x+0)+g(x-0)=f(x)+g(x)$ for $-\infty<x<\infty$.
(2) $\quad \psi(x)=u_{t}(x, 0)=c f^{\prime}(x+0)-c g^{\prime}(x-0)=c f^{\prime}(x)-c g^{\prime}(x)$

Wifferentisting (1) gives
(1') $\varphi^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$ for $-\infty<x<\infty$.
nultiply (1^{\prime}) by c and aubbract from (2) to get $-c \phi^{\prime}(x)+\psi(x)=-2 c g^{\prime}(x)$. fateqrating over the interval $0 \leq \xi \leq x$ and mimplifying gives

$$
g(x)-g(0)=\int_{0}^{x} g^{\prime}(\xi) d \xi=\int_{0}^{x}\left[\frac{1}{2} \varphi^{\prime}(\xi)-\frac{1}{2 c} \psi(\xi)\right] d \xi=\frac{1}{2} \varphi^{\prime}(x)-\frac{1}{2} \varphi^{(0)}-\frac{1}{2 c} \int_{0}^{x} \psi(\xi) d j
$$

Substituting in (1) yields

$$
f(x)=\varphi(x)-g(x)=\frac{1}{2} \varphi(x)+\frac{1}{2} \varphi(0)+\frac{1}{2 e} \int_{0}^{x} \psi(\xi) d \xi-g(0) .
$$

Thus

$$
\text { Thus } \begin{aligned}
u(x, t)= & f(x+c t)+g(x-c t) \\
= & \frac{1}{2} \varphi(x+c t)+\frac{1}{2} \varphi(0)+\frac{1}{2 c} \int_{0}^{x+c t} \psi(\xi) d \xi-g(0) \\
& +\frac{1}{2} \varphi(x-c t)-\frac{1}{2} \varphi(0)-\frac{1}{2 c} \int_{0}^{x-c t} \psi(\xi) d \xi+g(0) \\
\text { i.e. } u(x, t)= & \frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(\xi) d \xi
\end{aligned}
$$

(c) $c=1, \varphi(x)=e^{-x^{2}}$, and $\psi(x)=2 x e^{-x^{2}}$. Thus, by (b),

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left[e^{-(x+t)^{2}}+e^{-(x-t)^{2}}\right]+\frac{1}{2} \int_{x-t}^{x+t} 2 \xi e^{-\xi^{2}} d \xi+\left\{\begin{array}{l}
\text { Substitadion: } \\
v=-\xi^{2} \\
d v=-2 \xi d \xi
\end{array}\right. \\
& =\frac{1}{2}\left[e^{-(x+t)^{2}}+e^{-(x-t)^{2}}\right]-\left.\frac{1}{2}\left(e^{-\xi^{2}}\right)\right|_{\xi=x-t} ^{x+t} \\
& =\frac{1}{2}\left[e^{-(y+t)^{2}}+e^{-(x-t)^{2}}\right]-\frac{1}{2}\left[e^{-(x+t)^{2}}-e^{-(x-t)^{2}}\right]
\end{aligned}
$$

BONUS: An order to detain a solution to $(t)-(* *)$ which consists polly of a wave traveling to the right, we runt have

$$
\text { constant }=f(x+c t)=\frac{1}{2} \varphi(x+c t)+\frac{1}{2} \varphi(0)+\frac{1}{2 c} \int_{0}^{x+c t} \psi(s) d \xi-g(0)
$$

for all $-\alpha<x<\infty$ and all $t \geqslant 0$. Thus

$$
0=f^{\prime}(x)=\frac{1}{2} \varphi^{\prime}(x)+\frac{1}{2 c} \psi(x) \text { for ale }-\infty<x<\infty \text {, }
$$

a $\psi(x)=-c \varphi^{\prime}(x)$ for all $-\infty<x<\infty$.
the this cone,

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(\xi) d \xi \\
& =\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{x c} \int_{x-c t}^{x+c t}-c \varphi^{\prime}(\xi) d \xi \\
& =\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]-\frac{1}{2}[\varphi(x+c t)-\varphi(x-c t)]
\end{aligned}
$$

$=\varphi(x-c t)$ A wave troweling to theright along the x-axis with aped c.

EI

$$
\begin{aligned}
& \mu=66.2 \\
& \sigma=23.4
\end{aligned}
$$

$87-140$	NH 1	6
$73-86$	1	1
$60-72$	111	4
$50-59$		5
$0-49$	5	

