Mathematics 325
Exam I
Summer 2000
1.(25 pts.) (a) Find the general solution in the xy-plane of the partial
differential equation
(*)

$$y_{x} - x_{y} = 0.$$

(b) Sketch some of the characteristic curves of the pde (*).
(c) Find the solution of the pde (*) which satisfies
 $u(x,0) = x^{4}$ for $-\infty < x < \infty$.
 $[y,-x] \cdot \nabla u = 0$
 $D_{[y,-x]} u = 0$:. u is content along (elassificitic) curves where languet
 $at(x,y)$ is parallel to $[y,-x]$. Thus the characteristic
curves of the pde setting $\frac{d_{x}}{dt} = \frac{-x}{y} \Rightarrow ydy = -xdx \Rightarrow \frac{1}{2}y^{2} = -\frac{1}{2}x + c$
 $\Rightarrow x^{2}+y^{2} = c_{1} (c_{1}=2c)$. Thus we eisclus with centre of the origin and halins
 $\sqrt{c_{1}}$. Olong the characteristic circles, u is constant; so, or shell a curve,
 $u(x,y(x)) = u[t_{x}, y(t_{x})] = u(t_{x}, e) = f(c_{1}).$
(a) Therefore, the general solution to (*) in the xy-glane is $u(x,y) = f(x^{2}+y^{2})$
 $ranker f is a C'-function of a single heal corrisble.$
+3
(b) $\sqrt[3]{1-x^{2}+y^{2}=1}$
(c) $x^{4} = u(x,o) = f(x^{4}+b) = f(x^{3}) \Rightarrow f(t) - t^{2}$ for all $t \ge 0$.
Jhnce the solution $d(x)$ satisfying the condition $u(y,o) = x^{4}$ for $-u < x < \infty$
is $[u(x,y) = (x^{2}+y^{2})^{2}]$.

2.(25 pts.) An elastic string is held fixed at the endpoints and plucked. Carefully derive the partial differential equation that governs the motion of the string, assuming that air exerts a resistance at each point of the string which is proportional to the string's velocity at that point.

deflections are small,
$$u_{x}^{2} \ll 1$$
. Using this approximation in (1) yields
 $0 = -|\vec{T}_{1}| \cdot 1 + |\vec{T}_{2}| \cdot 1 \implies |\vec{T}| = T = \text{constant (throughout)}$

.

Also, this approximation yields in (2):

$$\int_{x \to \infty} \int_{x} \int$$

20 pts. to here

Dividuing by Ax and letting
$$\Delta x \rightarrow 0$$
 produces

$$\begin{array}{l} pu_{t}(x,t) = T u_{t}(x,t) - k u_{t}(x,t); \\ tt^{(x,t)} = T u_{t}(x,t) - k u_{t}(x,t); \\ tt^{(x,t)} = T u_{t}(x,t) - k u_{t}(x,t); \\ tt^{(x,t)} = 0 \end{array}$$
(If we don't use the approximation $u_{x}^{2} \ll 1$ and have a valiable density $p = p(x)$, then the equation of motion is: $p(x)u_{t}(x,t) - \frac{|\overline{T}(x,t,u)|}{\sqrt{1+u_{x}^{2}(x,t)}}u_{xx}(x,t) + k u_{t}(x,t) = 0. \end{array}$

3.(25 pts.) Classify the following partial differential equations as hyperbolic, parabolic, or elliptic, and if possible, find the general solution in the xy-plane.

(a)
$$u_{xx} + 4u_{yy} - 4u_{xy} + 25u = 0$$

(b) $u_{xx} + u_{xy} + 3u_{yy} + u_{yx} = 0$

Spin. (a)
$$B^{2} - 4AC = (-4)^{2} - 4(1)(4) = 0$$
 [parabolic]
The pole is supervisible as $(\frac{2}{3} - 2\frac{3}{3})^{2}n + 25n = 0$.
Let $\overline{5} = 2x + y$, Then the chain sule single is
 $\eta = -x + 2y$. $\frac{3}{3x} = 2\frac{3}{35} - \frac{3}{3\eta}$ and $\frac{3}{3y} = \frac{3}{35} + 2\frac{3}{3\eta}$.
Consequently, $\frac{3}{3x} - 2\frac{3}{3y} = 2\frac{2}{35} - \frac{3}{3\eta} - 2(\frac{3}{35} + 2\frac{3}{3\eta}) = -5\frac{3}{3\eta}$. Therefore,
the pole (a) to equivalent to $(-5\frac{3}{3\eta})^{n} + 25n = 0$.
By ODE methods, we are that $cos(\eta)$ and $sin(\eta)$ are fundamental solutions of
this equation. Consequently, the solution in the 5η - plane is
 $u = c_{1}(\overline{s})cos(\eta) + c_{2}(\overline{s})sin(\eta)$.
Thus, the general solution of (a) in the xy - plane is
 $u(s,y) = f(2x+y)cos(2y-x) + g(2x+y)sin(2y-x)$
where found g are arbitrary c^{2} -functions of a single real variable.

$$B^{2}-4AC = 2^{2}-4(1)(3) = -8 < 0$$
 elliptic

4.(25 pts.) (a) Derive the general solution to

7ots.

$$u_{tt} = c^2 u_{xx}$$

in the xt-plane.

(b) Derive a formula for the solution to (*) which satisfies the initial conditions

(**) $u(x,0) = \phi(x)$ and $u_{+}(x,0) = \psi(x)$

for $-\infty$ < x < ∞ . (Here ψ and ϕ are prescribed "sufficiently smooth" functions of a single real variable.)

(c) Write, and simplify as much as possible, the solution to

 $u_{tt} = u_{xx}$ in the xt-plane which satisfies $u(x,0) = e^{-x^2}$ and $u_{t}(x,0) = 2xe^{-x^2}$ for $-\infty < x < \infty$.

(d) Sketch profiles of the solution to part (c) for times t = 1, t = 2, and t = 3.

BONUS(10 pts.). Derive a general (nontrivial) relation between ϕ and ψ which will produce a solution to (*)-(**) consisting solely of a wave traveling to the right along the x-axis.

(b) Apply the I.C.'s (why to the general solution of (*) in the xt-plane to get:
(1)
$$g^{(x)} = u(x, o) = f(x+o) + g(x-o) = f(x) + g(x)$$
 for $-\infty < x < \infty$.
(2) $\Psi(x) = u_{2}(x, o) = cf'(x+o) - cg'(x-o) = cf(x) - cg'(x)$
(3) $\Psi(x) = u_{2}(x, o) = cf'(x+o) - cg'(x-o) = cf(x) - cg'(x)$
(4) $\Psi(x) = u_{2}(x, o) = cf'(x+o) - cg'(x-o) = cf(x) - cg'(x)$
(1') $q'(x) = f'(x) + g'(x)$ for $-m < x < \infty$.
Pulligly (1') by c and subtract from (2) to get $-cq'(x) + f(x) = -2cg'(x)$.
Interplating over the interval $0 \le g \le x$ and simplifying gives
 $g^{(x)} - g^{(o)} = \int_{0}^{x} g'(y) dy = \int_{0}^{x} [\frac{1}{2}q'(y) - \frac{1}{2c}f'(y)] dy = \frac{1}{2}q^{(x)-\frac{1}{2}}q^{(x)-\frac{1}{2}}\int_{0}^{x} H(y) dy$
Subdituting in (1) gields
 $f(x) = q(x) - g(x) = \frac{1}{2}q^{(x)} + \frac{1}{2}q^{(0)} + \frac{1}{2c}\int_{0}^{x} \Psi(y) dy - g^{(c)}$.
Thus $u(x,t) = f(x+ct) + g(x-ct)$ suct
 $= \frac{1}{2}q(x+ct) + \frac{1}{2}q^{(0)} - \frac{1}{2c}\int_{0}^{x-ct} H(y) dy - g^{(c)}$
 $i.$
 $u(x,t) = \frac{1}{2}[q^{(x+ct)} + q^{(x-ct)}] + \frac{1}{2c}\int_{0}^{x-ct} H(y) dy - g^{(c)}$

(c)
$$C=1$$
, $\varphi(x) = e^{-x^{2}}$ and $\psi(x) = 2xe^{-x^{2}}$. Thus, by (b),
 $u(x,t) = \frac{1}{2} \left[e^{-(x+t)^{2}} + e^{-(x-t)^{2}} \right] + \frac{1}{2} \int 2ge^{-x^{2}} dg + \int U = -g^{2}$
 $u(x,t) = \frac{1}{2} \left[e^{-(x+t)^{2}} + e^{-(x-t)^{2}} \right] - \frac{1}{2} \left(e^{-y^{2}} \right) \left[dU = -2gdy \right]$
 $= \frac{1}{2} \left[e^{-(x+t)^{2}} + e^{-(x-t)^{2}} \right] - \frac{1}{2} \left(e^{-y^{2}} \right) \left[\frac{g}{ge^{-x+t}} + e^{-y^{2}} \right] - \frac{1}{2} \left[e^{-(x+t)^{2}} - e^{-(x-t)^{2}} \right]$
 $= \frac{1}{2} \left[e^{-(x+t)^{2}} + e^{-(x-t)^{2}} \right] - \frac{1}{2} \left[e^{-(x+t)^{2}} - e^{-(x-t)^{2}} \right]$
 $(DUER)^{2}$

7 pts.

$$8 \eta^{1} = 4(c) (cont.) \qquad u(x,t) = e^{-(x-t)^{2}}$$

$$3 \eta^{1}. \qquad (d) \qquad 1 \qquad u(x,t) = u(x,1) \qquad u = u(x,2) \qquad u = u(x,3) \qquad u =$$

BONUS: In order to obtain a solution to
$$(*) - (**)$$
 which consists
polely of a wave traveling to the right, we must have
 $x+ct$
constant = $f(x+ct) = \frac{1}{2}q(x+ct) + \frac{1}{2}q(0) + \frac{1}{2c}\int_{0}^{0} \frac{1}{2}(s)ds - q(0)$

for all - xi < x < ∞ and all
$$t \ge 0$$
. Thus

$$0 = f'(x) = \frac{1}{2} \varphi'(x) + \frac{1}{2c} \psi'(x) \quad \text{for all } -\infty < x < \infty,$$
or $\psi(x) = -c\varphi'(x) \quad \text{for all } -\infty < x < \infty.$

In this case ,

EI $\mu = 66.2$ $\sigma = 23.4$

•

 87-140 111 6

 73-86 1 1

 60-72 1111 4

 50-59 1114 5

 0-49 1114 5

-

.