Exam II I
Summer 2000

Name: Pr. Grow
$\ldots\left(40\right.$ pts.) Let $\phi(x)=x^{2}$ for $0 \leq x \leq 1$.
(a) Show that the Fourier cosine series for ϕ on $[0,1]$ is

$$
\frac{1}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n} \cos (n \pi x)}{(n \pi)^{2}}
$$

(b) Find the Fourier sine series for ϕ on [0,1].
(c) Discuss convergence (or lack thereof) in the mean square sense for the Fourier sine and cosine series of ϕ on [0,1].
(d) For which x in $[0,1]$ does the Fourier sine series of ϕ converge to $\phi(x)$? Justify your answer.
(e) (of Does the Fourier cosine series of ϕ converge uniformly on [o, 1]? Justify your answer.
(f) Ser Starting with the Fourier cosine series of the function $\phi(x)=x^{2}$ on [0,1], apply Parseval's identity to help evaluate the sum
(a)

$$
\therefore a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n} \cos (n \pi x)}{(n \pi)^{2}}
$$

Fourier cosine series of φ on $[0,1]$.
(b)

$$
\begin{aligned}
b_{n} & =\frac{\langle\varphi, \sin (n \pi \cdot)\rangle}{\langle\sin (n \pi \cdot), \sin (n \pi \cdot)\rangle}=2 \int_{0}^{(-1)^{n}} x_{0}^{2} \sin (n \pi x) d x \\
& =\frac{-2 \overbrace{\cos (n \pi)}^{n}}{n \pi}+\left.\frac{4}{n \pi}\left(\frac{x \sin (n+\pi)}{n \pi}\right)\right|_{0} ^{2}-\frac{4}{n \pi} \int_{0}^{1} \frac{\sin (n \pi x)}{n \pi}+\frac{2}{n \pi} \int_{0}^{1} 2 x \\
& =\frac{2(-1)^{n+2}}{n \pi}+\left.\frac{4}{(n \pi)^{2}}\left(\frac{\cos (n \pi x)}{n \pi}\right)\right|_{0} ^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n^{4}} .
\end{aligned}
$$

$$
\begin{aligned}
& =-\left.\frac{4}{n \pi}\left(\frac{-x \cos (n \pi x)}{n \pi}\right)\right|_{0} ^{1}+\frac{4}{n \pi} \int_{0}^{1}-\frac{\cos (n \pi x)}{n \pi} d x=\frac{4}{(n \pi)^{2}}\left[\frac{(-1)^{n}}{\cos (n \pi)}\right]=\frac{4(-1)^{n}}{(n \pi)^{2}} \\
& a_{0}=\frac{\langle\varphi, 1\rangle}{\langle 1,1\rangle}=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}
\end{aligned}
$$

$$
\therefore \sum_{n=1}^{\infty} b_{n} \sin (n \pi x)=\sum_{n=1}^{\infty}\left\{\frac{2(-1)^{n+1}}{n \pi}+\frac{4\left[(-1)^{n}-1\right]}{(n \pi)^{3}}\right\} \sin (n \pi x)
$$

Fourier sine series of 9 on $[0,1]$
(c) Since $\int_{0}^{1} \varphi^{2}(x) d x=\int_{0}^{1} x^{4} d x=\frac{1}{5}<\infty$, the fourier cosine and fourier sine series of ρ converge to ρ in the mean-square sense. (Theorem 3, p. 124)
(e) Since $\left|\frac{1}{3}\right|+\sum_{n=1}^{\infty}\left|\frac{4(-1)^{n} \cos (n \pi x)}{(n \pi)^{2}}\right| \leq \frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$
for all $0 \leq x \leq 1$, the Fourier cosine series of ρ is absolutely and uniformly convergent on $[0,1]$. (in fact, the Fourier cosine series of φ is uniformly convergent to φ on $[0,1]$.)
(f) $\sum_{n=0}^{\infty} a_{n}^{2} \int_{0}^{1} \cos ^{2}(n \pi x) d x=\int_{0}^{1} \rho^{2}(x) d x$
(Parseval)

$$
\Rightarrow \quad\left(\frac{1}{3}\right)^{2}+\sum_{n=1}^{\infty}\left(\frac{4(-1)^{n}}{(n \pi)^{2}}\right)^{2} \cdot \frac{1}{2}=\frac{1}{5} \quad(\text { hg }(a) \text { and }(c))
$$

$$
\begin{array}{r}
\frac{8}{\pi^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45} \\
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{8} \cdot \frac{4}{45}=\frac{\pi^{4}}{90}
\end{array}
$$

(d) Since $\varphi(x)=x^{2}$ and $\varphi^{\prime}(x)=2 x$ are continuous on $[0,1]$, the fourier sine series of φ at x comerges to $\rho(x)$ for all $0<x<1$. (Theorem $4, p .125$) At the endpoints: The Fourier sine series of φ at 0 is (clearly) 0 and this is equal to $\varphi(0)=0^{2}=0$. The fourier sine series of φ at 1 is (clearly) 0 and this not equal to $\varphi(1)=1^{2}=1$.
Conchsion: The Fourier nine series of φ at x comedies to $\varphi(x)$ for all $0 \leq x<1$
2. (30 pts.) (a) Show that the operator T defined on $v=\left\{f \in C^{2}(0,1]: f(1)=0, f\right.$ and f bounded on $\left.(0,1]\right\}$

$$
T f(x)=\frac{1}{x} \frac{d}{d x}\left(x \frac{d f}{d x}\right)-\frac{n^{2}}{x^{2}} f(x) \quad(0<x \leq 1)
$$

is hermitian. (Please use the inner product on V given by 1

$$
\left.\langle f, g\rangle=\int_{0}^{f} f(x) \overline{g(x)} x d x .\right)
$$

(b) Are the eigenvalues of T on V real? Why or why not?
(c) Are the eigenvalues of T on V nonnegative? Why or why not?
(d) Are the eigenfunction of T on V, corresponding to distinct eigenvalues, orthogonal on $(0,1) ?$ Why or why not?
Let $f, g \in V$.
(a)

$$
\begin{aligned}
& \langle T f, g\rangle=\int_{0}^{1} T f(x) \overline{g(x)} x d x=\int_{0}^{1} \frac{y}{x} \frac{d}{d x}\left(x \frac{d f}{d x}\right) \overline{g(x)} \underset{\sim}{x}-\frac{v}{d x}-n^{2} \frac{1}{x^{2}} f(x) \overline{g(x)} x d x \\
& =\underbrace{\left.x \frac{d f}{d x} g(x)\right|_{0} ^{1}-\int_{0}^{1} \frac{d f}{d x} \frac{d g}{d x} d x}-x^{2} \int_{0}^{1} \frac{1}{x^{2}} f(x) g(x) x d x \\
& 0 \text { because } f^{\prime}(1) g(1)=0 \text { and } \lim _{\varepsilon \rightarrow 0^{+}} \varepsilon f^{\prime}(\varepsilon) g(\varepsilon)=0 \\
& =-\left.x \frac{d g}{d x} f(x)\right|_{0} ^{1}+\int_{0}^{1} f(x) \frac{d}{d x}(x \overline{d g}) d x-n^{2} \int_{0}^{1} \frac{1}{x^{2}} f(x) \overline{g(x)} x d x \\
& 0 \text { hecacuse }-\overline{g^{\prime}(1)} f(1)=0 \text { and } \lim _{\varepsilon \rightarrow 0^{+}}-\varepsilon \overline{g^{\prime}(\varepsilon)} f(\varepsilon)=0 \\
& \left.=\int_{0}^{1} f(x)\left[\frac{1}{x} \frac{d}{d x}\left(x \frac{d g}{d x}\right)-\frac{n^{2}}{x^{2}} g(x)\right] x d x \quad\langle f, T g\rangle\left(\begin{array}{l}
\text { Thus, } T i n \\
\text { hermitian }
\end{array}\right] .\right)
\end{aligned}
$$

(b) Yes, the eigenvalues of T on V are real by the argument given in class.
(d) Yes, the eigenfunction of T on V, corresponding to distinct eigenvalues, are orthogonal on $(0,1)$ (relative to the weight function x) by the argument given in class.
(c) No, for let λ be an ingenurahe of T on Y and let f be a corresponding eigenfunction Joking $g=f$ in the first two lines of (a),

$$
\lambda\langle f, f\rangle=\langle\lambda f, f\rangle=\langle T f, f\rangle=-\left.\int_{0}^{1} x\left|\frac{f f}{d x}\right|^{2}\right|^{2}-x^{2} \int_{0}^{1}|f(x)|^{2} \frac{1}{x} d x<0 \text {. Thus } 1+0_{0}
$$

3. (30 pts.) Find a solution to

$$
u_{t t}=u_{x x} \text { for } 0<x<1,0<t<\infty,
$$

abject to the homogeneous boundary/initial conditions

$$
u_{x}(0, t)=0=u_{x}(1, t) \text { and } u_{t}(x, 0)=0 \text { for } 0 \leq t, 0 \leq x \leq 1
$$

and the nonhomogeneous initial condition

$$
u(x, 0)=x^{2} \quad \text { for } 0 \leq x \leq 1
$$

Is your solution the only possible one? Give a complete justification of your answer.
$u(x, t)=\bar{X}(x) T(t)$ (nontrivial solus. to the homogeneous pact of the problem)

$$
\bar{X}(x) T^{\prime \prime}(t)=\Sigma^{\prime \prime}(x) T(t) \Rightarrow-\frac{\bar{X}^{\prime \prime}(x)}{\underline{X}(x)}=\frac{-T^{\prime \prime}(t)}{T(l)}=\text { constant }=\lambda .
$$

$$
\begin{aligned}
& \left.u_{x}(0, t)=\nabla^{\prime}(0) T(t)=0\right\}(0 \leq t<\infty) \text { and } u=\bar{X} T \text { nontrivial } \Rightarrow \bar{\Sigma}^{\prime}(0)=0=\bar{\Sigma}^{\prime}(1) \\
& u_{x}(1, t)=Z^{\prime}(1) T(t)=0 \quad u_{t}(x, 0)=\nabla(x) T^{\prime}(0)=0 \quad(0 \leq x \leq 1) \quad \Rightarrow T^{\prime}(0)=0 \\
& \bar{X}^{\prime \prime}(x)+\lambda \bar{Z}(x)=0 \quad(0<x<1), \bar{Z}^{\prime}(0)=\bar{X}^{\prime}(1)=0 \\
& T^{\prime \prime}(t)+\lambda T(t)=0 \quad(0<t<\infty), T^{\prime}(0)=0
\end{aligned}
$$

Eigenvalues: $\quad \lambda_{n}=(n \pi)^{2} \quad(n=0,1,2, \ldots)$
Eigenfundions: $\quad X_{n}(x)=\cos (n \pi x) \quad(n=0,1,2, \ldots)$
Solution to t-equation corresponding to $\lambda=\lambda_{n}: T_{n}(t)=\cos (n \pi t) \quad(n=0,1,2, \ldots)$
$\therefore n(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \cos (n \pi t)$ is a formal solution to the homogeneones part of the problem. Te want to choose the constants a_{0}, a_{1}, \ldots wo the nonhomogeneous I.C. is satisfied:

$$
x^{2} \stackrel{d}{=} u(x, 0)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \quad \text { for } 0 \leq x \leq 1 \text {. }
$$

By problem 1, $a_{0}=\frac{1}{3}$ and $a_{n}=\frac{4(-1)^{n}}{(n \pi)^{2}}(n \geq 1)$ suffice. Thus

$$
u(x, t)=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n} \cos (n \pi x) \cos (n \pi t)}{(n \pi)^{2}}
$$

solves the problem. Jhis in the only solution, too. Jo see this,
suppose that $u=u_{2}(x, t)$ were another solution. Then

$$
w(x, t)=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n} \cos (n \pi x) \cos (n \pi t)}{(n \pi)^{2}}-u_{2}(x, t)
$$

solves

$$
\begin{aligned}
& w_{t t}=w_{x x} \quad(0<x<1,0<t<\infty) \\
& w_{x}(0, t)=0=w_{x}(1, t) \quad(0 \leq t<\infty), \\
& w(x, 0)=0=w_{t}(x, 0) \quad(0 \leq x \leq 1) .
\end{aligned}
$$

Consider the energy, function of w,

$$
E(t)=\int_{0}^{1}\left[w_{t}^{2}(x, t)+w_{x}^{2}(x, t)\right] d x \quad(t \geqslant 0) .
$$

Observe that

$$
\begin{aligned}
E^{\prime}(t) & =\int_{0}^{1} \frac{\partial}{\partial t}\left[w_{t}^{2}(x, t)+w_{x}^{2}(x, t)\right] d x \\
& =2 \int_{0}^{1} w_{t}(x, t) w_{t t}(x, t) d x+2 \int_{0}^{1} w_{x}(x, t) w_{x t}(x, t) d x \\
& =2 \int_{0}^{1} \overbrace{w_{t}(x, t)}^{w_{x x}(x, t) d x} d r+2 \int_{0}^{1} w_{x}(x, t) w_{x t}(x, t) d x \\
& =\left.\underbrace{2 w_{t}(x, t) w_{x}(x, t)}_{0 \text { since } w_{x}(1, t)}\right|_{0} ^{1}-2 \int_{0}^{1} \int_{0}^{w_{t x}(0, t)} \quad w_{x}(x, t) w_{x}(x, t) d x+2 \int_{0}^{1} w_{x}(x, t) w_{x t}(x, t) d x \\
& =0 \quad \underbrace{}_{w_{t x}=w_{x t}}
\end{aligned}
$$

Thus $E(t)=$ constant for all $t \geq 0$. But

$$
\begin{aligned}
& \text { constant for all } t \geq 0 \text {. But } \\
& E(0)=\int_{0}^{1}[\underbrace{\left[w_{t}^{2}(x, 0)\right.}_{\text {since }}+\overbrace{w_{x}^{2}(x, 0)=0 \text { mince } w_{x}(x, 0)}^{w_{x}(x, 0)}=\lim _{h \rightarrow 0} \frac{\overbrace{\frac{w(x+h, 0)}{0}-\overbrace{w(x, 0)}^{0}}^{h}=0 \text { in } x}{0}=0,
\end{aligned}
$$

so $E(t)=0$ for all $t \geqslant 0$. By contiminity and positivity of the integrand of

E, it follows that $w_{t}^{2}(x, t)+w_{x}^{2}(x, t)=0$ for all $0 \leq x \leq 1$ and $t \geqslant 0$. Consequently $0=W_{t}(x, t)=W_{x}(x, t)$ for all $0 \leq x \leq 1$ and $t \geq 0$, from which it follows that $w(x, t)=$ constant on $0 \leq x \leq 1,0 \leq t<\infty$. But thew $W(x, 0)=0$ for $0 \leq x \leq 1$ implies $w(x, t)=0$ for all $0 \leq x \leq 1$ and $0 \leq t<\infty$. That is,

$$
u_{2}(x, t)=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n} \cos (n \pi x) \cos (n \pi t)}{(n \pi)^{2}} \quad(0 \leq x \leq 1,0 \leq t<\infty) .
$$

