This examination consists of 7 problems of equal value. You have the option of making this exam count either 200 or 300 points. Before turning in this exam paper, please indicate clearly your selection below.

I want this examination to count __-_ points.
Name: Pr: Grow

1. Consider the partial differential equation
(*)

$$
\sqrt{1+x^{2}} u_{x}+2 x y u_{y}=0
$$

(a) What are the order (first, second, third, etc.) and type (linear or nonlinear) of (*)?
(b) Find and sketch the graphs of three of the characteristic curves of (*).
(c) Find the general solution of (*).
(d) What is the solution to (*) satisfying $u(0, y)=y^{3}$ for $-\infty<y<\infty$?
2. Consider the partial differential equation

$$
u_{x x}-4 u_{x t}+4 u_{t t}=0 .
$$

(a) Classify (*)'s order (first, second, third, etc.) and type (linear, nonlinear, hyperbolic, elliptic, etc.).
(b) Find the general solution of (*) in the $x t-p l a n e$.
(c) Find the solution of (*) that satisfies

$$
u(x, 0)=4 x^{3} \text { and } u_{t}(x, 0)=-4 x^{2}
$$

for $-\infty<x<\infty$.
3. Find a solution to

$$
u_{t}-u_{x x}=0 \text { for }-\infty<x<\infty \text { and } 0<t<\infty,
$$

which satisfies $u(x, 0)=x^{4}$ for $-\infty<x<\infty$. You may find the following identities useful:
$\sqrt{\pi}=\int_{-\infty}^{\infty} e^{-p^{2}} d p=2 \int_{-\infty}^{\infty} p^{2} e^{-p^{2}} d p=\frac{4}{3} \int_{-\infty}^{\infty} p^{4} e^{-p^{2}} d p, 0=\int_{-\infty}^{\infty} p e^{-p^{2}} d p=\int_{-\infty}^{\infty} p^{3} e^{-p^{2}} d p$.
4. (a) If f is an absolutely integrable function and b is a real number, show that the function $g(x)=f(x-b)$ has Fourier transform

$$
\hat{g}(\xi)=e^{-i \xi b} \cdot \hat{f}(\xi) .
$$

(b) Use Fourier transform methods to find a formula for the solution
to

$$
u_{t}-u_{x x}+u_{x}=0 \quad \text { for }-\infty<x<\infty \text { and } 0<t<\infty
$$

subject to the initial condition $u(x, 0)=\phi(x)$ for $-\infty<x<\infty$.
5. (a) Find a solution to ©

$$
u_{t t}-u_{x x}=0 \text { for } 0<x<1,0<t<\infty,
$$

subject to
(2)-(3) $u_{x}(0, t)=u_{x}(1, t)=0$ for $t \geq 0$,
and

$$
u(x, 0) \stackrel{\oplus}{=} \cos (3 \pi x)+3 \cos (\pi x), u_{t}(x, 0) \stackrel{\ominus}{=} 0 \quad \text { for } 0 \leq x \leq 1
$$

(b) Show that there is only one solution to the problem in (a).
6. Consider the 2m-periodic function f given on one period by $f(x)=|x|$ if $-\pi \leq x<\pi$.
(a) Calculate the full Fourier series of f on $[-\pi, \pi]$.
(b) Write the sum of the first three nonzero terms of the full fourier series of f and sketch the graph of this sum on $[-\pi, \pi]$. Dn the same coordinate axes, sketch the graph of f.
(c) Does the full Fourier series of f converge to f in the mean square sense on $[-\pi, \pi]$? Why?
(d) Does the full Fourier series of f converge to f pointwise on $[-\pi, \pi]$? Why?
(e) Does the full Fourier series of f converge to funiformly on $[-\pi, \pi]$? Why?
(f) Use the results above to help find the sum $\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}$.
(g) Use the results above to help find the sum $\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}}$.
7. Find the steady-state temperature distribution inside an annular plate with inner radius 1 and outer radius 2 if the inner edge $r=1$ is insulated and on the outer edge $r=2$ the temperature is maintained as $|\theta|$ for $-\pi \leq \theta<\pi$. (Hint: You should find the results of problem 6 useful.)
$f(x)$
A. $\begin{cases}1 & \text { if }-b<x<b, \\ 0 & \text { otherwise. }\end{cases}$
B. $\begin{cases}1 & \text { if } c<x<d, \\ 0 & \text { otherwise. }\end{cases}$
c. $\frac{1}{x^{2}+a^{2}} \quad(a>0)$
D. $\begin{cases}x & \text { if } 0<x \leq b, \\ 2 b-x & \text { if } b<x<2 b, \\ 0 & \text { otherwise. }\end{cases}$
E. $\begin{cases}e^{-a x} & \text { if } x>0, \\ 0 & \text { otherwise. }\end{cases}$
($a>0$)
$\ldots\left\{\begin{array}{cl}e^{a x} & \text { if } b<x<c, \\ 0 & \text { otherwise } .\end{array}\right.$
G. $\begin{cases}e^{i a x} & \text { if }-b<x<b, \\ 0 & \text { otherwise. }\end{cases}$
H. $\begin{cases}e^{\text {iax }} & \text { if } c<x<d, \\ 0 & \text { otherwise } .\end{cases}$
I. $e^{-a x^{2}} \quad(a>0)$
J. $\frac{\sin (a x)}{x} \quad(a>0)$

$$
\hat{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \xi x} d x
$$

$$
\sqrt{\frac{2}{\pi}} \frac{\sin (\mathrm{~b} \xi)}{\xi}
$$

$$
\frac{e^{-i c \xi}-e^{-i d \xi}}{i \xi \sqrt{2 \pi}}
$$

$$
\sqrt{\frac{\pi}{2}} \frac{e^{-a|\xi|}}{a}
$$

$$
\frac{-1+2 e^{-i b \xi}-e^{-2 i b \xi}}{\xi^{2} \sqrt{2 \pi}}
$$

$$
\frac{1}{(a+i \xi) \sqrt{2 \pi}}
$$

$$
\frac{e^{(a-i \xi) c}-e^{(a-i \xi) b}}{(a-i \xi) \sqrt{2 \pi}}
$$

$$
\sqrt{\frac{2}{\pi}} \frac{\sin (b(\xi-a))}{\xi-a}
$$

$$
\frac{i}{\sqrt{2 \pi}} \frac{e^{i c(a-\xi)}-e^{i d(a-\xi)}}{a-\xi}
$$

$$
\frac{1}{\sqrt{2 a}} e^{-\xi^{2} /(4 a)}
$$

$$
\left\{\begin{array}{cl}
0 & \text { if }|\xi| \geq a \\
\sqrt{\pi / 2} & \text { if }|\xi|<a .
\end{array}\right.
$$

Convergence Theorems

$$
\begin{equation*}
X^{\prime \prime}+\lambda X=0 \text { in }(a, b) \text { with any symmetric } \mathrm{BC} . \tag{1}
\end{equation*}
$$

Now let $f(x)$ be any function defined on $a \leq x \leq b$. Consider the Fourier series for the problem (1) with any given boundary conditions that are symmetric. We now state a convergence theorem for each of the three modes of convergence. They are partly proved in the next section.
Theorem 2. Uniform Convergence The Fourier series $\sum A_{n} X_{n}(x)$ converges to $f(x)$ uniformly on $[a, b]$ provided that
(i) $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ exist and are continuous for $a \leq x \leq b$ and
(ii) $f(x)$ satisfies the given boundary conditions.

Theorem 3. L^{2} Convergence The Fourier series converges to $f(x)$ in the mean-square sense in (a, b) provided only that $f(x)$ is any function for which

$$
\begin{equation*}
\int_{a}^{b}|f(x)|^{2} d x \text { is finite. } \tag{8}
\end{equation*}
$$

Theorem 4. Pointwise Convergence of Classical Fourfer Sertes

(i) The classical Fourier series (full or sine or cosine) converges to $f(x)$ pointwise on (a, b), provided that $f(x)$ is a continuous function on $a \leq x \leq b$ and $f^{\prime}(x)$ is piecewise continuous on $a \leq x \leq b$.
(ii) More generally, if $f(x)$ itself is only piecewise continuous on $a \leq x \leq b$ and $f^{\prime}(x)$ is also piecewise continuous on $a \leq x \leq b$, then the classical Fourier series converges at every point $x(-\infty<x<\infty)$. The sum is

$$
\begin{equation*}
\sum_{n} A_{n} X_{n}(x)=\frac{1}{2}[f(x+)+f(x-)] \quad \text { for all } a<x<b \tag{9}
\end{equation*}
$$

The sum is $\frac{1}{2}\left[f_{\text {ext }}(x+)+f_{\text {ext }}(x-)\right]$ for all $-\infty<x<\infty$, where $f_{\text {ext }}(x)$ is the extended function (periodic, odd periodic, or even periodic).

Theorem 4∞. If $f(x)$ is a function of period $2 l$ on the line for which $f(x)$ and $f^{\prime}(x)$ are piecewise continuous, then the classical full Fourier series converges to $\frac{1}{2}[f(x+)+f(x-)]$ for $-\infty<x<\infty$.

$$
\sqrt{1+x^{2}} u_{x}+2 x y u_{y}=0
$$

(a) first-order, linear (homogeneous)
(b) Characteristic curves: $\frac{d y}{d x}=\frac{2 x y}{\sqrt{1+x^{2}}} \Rightarrow \int \frac{d y}{y}=\int \frac{2 x}{\sqrt{1+x^{2}}} d x \quad\binom{w=1+x^{2}}{d w=2 x d x}$

$$
\ln (y)=2 \sqrt{1+x^{2}}+c \Rightarrow A e^{2 \sqrt{1+x^{2}}} \quad\left\{\begin{array}{l}
y=e^{2 \sqrt{1+x^{2}}}(A=1) \\
y=-e^{x} \quad(A=0), \\
(A=-1 .
\end{array}\right.
$$

(c) Along each characteristic curve the solution $u=u(x, y)$ is constant:

$$
u(x, y)=u\left(x, A e^{2 \sqrt{1+x^{2}}}\right)=u\left(0, A e^{2}\right)=f(A) .
$$

Therefore $u(x, y)=f\left(y e^{-2 \sqrt{1+x^{2}}}\right)$ where f is any c^{\prime}-function of a single real variable.
(d) $y^{3}=u(0, y)=f\left(y e^{-2}\right)$ for all $-\alpha<y<\infty$. Let $z=y e^{-2}$; then $f(z)=\left(e^{2} z\right)^{3}$ $=e^{6} z^{3}$ for all $-\infty<z<\infty$. Consequently, the solution to te I.V.P. is

$$
u(x, y)=f\left(y e^{-2 \sqrt{1+x^{2}}}\right)=e^{6}\left(y e^{-2 \sqrt{1+x^{2}}}\right)^{3}=e^{6} e^{-6 \sqrt{1+x^{2}}} y^{3}
$$

\#2. (t) $\quad u_{x x}-4 u_{x t}+4 u_{t t}=0$

$$
B^{2}-4 A C=(-4)^{2}-4(1)(4)=0
$$

(a) Second-order, linear": parabolic
(b)

$$
\begin{aligned}
0 & =\left(\frac{\partial^{2}}{\partial x^{2}}-4 \frac{\partial^{2}}{\partial x t}+4 \frac{\partial^{2}}{\partial t^{2}}\right) u \\
& =\left(\frac{\partial}{\partial x}-2 \frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial x}-2 \frac{\partial}{\partial t}\right) u
\end{aligned}
$$

Let $\begin{cases}\xi=2 x+t, & \text { Then } \frac{\partial v}{\partial x}=\frac{\partial v}{\partial \xi} \frac{\partial q}{\partial x}+\frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial x}=2 \frac{\partial v}{\partial \xi}+\frac{\partial v}{\partial \eta} \\ \eta=x-2 t . & \text { and } \frac{\partial v}{\partial t}=\frac{\partial v}{\partial \xi} \frac{\partial \xi}{\partial t}+\frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial t}=\frac{\partial v}{\partial \xi}-2 \frac{\partial v}{\partial \eta} .\end{cases}$
I.e. as operators, $\frac{\partial}{\partial x}=\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}$ and $\frac{\partial}{\partial t}=\frac{\partial}{\partial \xi}-2 \frac{\partial}{\partial \eta}$.

Therefore $\frac{\partial}{\partial x}-2 \frac{\partial}{\partial t}=\left(2 \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right)-2\left(\frac{\partial}{\partial \xi}-2 \frac{\partial}{\partial \eta}\right)=5 \frac{\partial}{\partial \eta}$, so (k) is
equivalent to $25 \frac{\partial^{2} u}{\partial \eta^{2}}=0 \Rightarrow \frac{\partial u}{\partial \eta}=f(\xi) \Rightarrow u=\eta f(\xi)+g(\xi)$.
$\therefore u(x, t)=(x-2 t) f(2 x+t)+g(2 x+t) \quad$ where f and g are c^{2}-functions of a single real variable.

12
(c) $\quad u_{t}(x, t)=-2 f(2 x+t)+(x-2 t) f^{\prime}(2 x+t)+g^{\prime}(2 x+t)$

$$
\left\{\begin{aligned}
4 x^{3}=u(x, 0)=x f(2 x)+g(2 x) \quad \text { for all real } x . \\
-4 x^{2}=u_{t}(x, 0)=-2 f(2 x)+x f^{\prime}(2 x)+g^{\prime}(2 x) \quad \text { for all real } x .
\end{aligned}\right.
$$

Differenting the first identity in the system above gives

$$
12 x^{2}=1 \cdot f(2 x)+2 x f^{\prime}(2 x)+2 g^{\prime}(2 x)
$$

Multiplying the scend identity in the system by 2 gives

$$
-8 x^{2}=-4 f(2 x)+2 x f^{\prime}(2 x)+2 g^{\prime}(2 x) .
$$

Subtracting the last equation from the preceding one yields
$20 x^{2}=5 f(2 x)$ for all real x; iss. $4 x^{2}=(2 x)^{2}=f(2 x)$ so $f(z)=z^{2}$ for all z.
Substituting this for f in the first identity of the system produces

$$
\begin{aligned}
& \quad 4 x^{3}=x f(2 x)+g(2 x)=x(2 x)^{2}+g(2 x) \Rightarrow g(2)=0 \text { for all real z. } \\
& \therefore \quad u(x, t)=(x-2 t) f(2 x+t)+g(2 x+t)=(x-2 t)(2 x+t)^{2} .
\end{aligned}
$$

Hi $\quad u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^{2}}{4 t}} y^{4} d y$. Let $p=\frac{y-x}{\sqrt{4 t}}$. Then $d p=\frac{d y}{\sqrt{4 t}}$.

$$
\begin{aligned}
\therefore u(x, t)= & \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^{2}}(x+p \sqrt{4 t})^{4} d p \\
= & \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^{2}}\left\{x^{4}+4 x^{3} p \sqrt{4 t}+6 x^{2} p^{2}(4 t)+4 x p^{3} 4 t \sqrt{4 t}+p^{4}(4 t)^{2}\right\} d p \\
= & \frac{x^{4}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^{2}} e^{\sqrt{\pi}} p+\frac{4 x^{3} \sqrt{4 t}}{\sqrt{\pi}} \int_{-\infty}^{\infty} p e^{p^{2}} d p+\frac{24 x^{2} t}{\sqrt{\pi}} \int_{-\infty}^{\infty} p^{2} e^{-p^{3}} d p+\frac{16 x t \sqrt{4 t}}{\sqrt{\pi}} \int_{-\infty}^{\infty} p^{3} e^{3-p^{2}} d p \\
& +\frac{16 t^{2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} p^{4} e^{-p^{2}} d p
\end{aligned}
$$

\#3 (cont.) $\quad u(x, t)=x^{4}+12 x^{2} t+12 t^{2}$

Check:

$$
\begin{aligned}
& u_{t}-u_{x x}=\left(12 x^{2}+24 t\right)-\left(12 x^{2}+24 t\right) \cong 0 \\
& u(x, 0)=x^{4}
\end{aligned}
$$

\#4 (a) $\hat{g}(3)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} g(x) e^{-i s x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-b) e^{-i j x} d x \quad\left\{\begin{array}{l}\text { Let } y=x-b . \\ \text { han } d y=d x .\end{array}\right.$

$$
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(y) e^{-i \xi(y+b)} d y=e^{-i \xi b} \cdot \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(y) e^{-i \xi y} d y=e^{-i \xi b} \hat{f}(\xi) \text {. }
$$

(b)

$$
\begin{aligned}
& f\left(u_{t}-u_{x x}+u_{x}\right)(3)=f(0)(3)=0 \\
& \frac{\partial}{\partial t} f(u)(3)-f\left(u_{x x}\right)(3)+f\left(u_{x}\right)(3)=0
\end{aligned}
$$

Using the property $\widehat{f^{\prime}}(\xi)=i \xi \hat{f}(s)$ we have

$$
\begin{aligned}
& \frac{\partial}{\partial t} f(u)(\xi)-(i \xi)^{2} f(u)(\xi)+i \xi f(u)(\xi)=0 \\
& \frac{\partial f(u)(\xi)+\left(i \xi+\xi^{2}\right) f(u)(\xi)=0 .}{} .
\end{aligned}
$$

(Linear, finst-onder ODE in the variable t)
Integrating factor: $e^{\int\left(i j+5^{2}\right) d t}=e^{i s t}: e^{3^{2} t}$

$$
\begin{gathered}
e^{\left(i s+\xi^{2}\right) t} \frac{\partial f}{\partial t} f(u)(\xi)+\left(i s+\xi^{2}\right) e^{\left(i \xi+\xi^{2} t\right)} f(u)(\xi)=0 \\
\frac{\partial}{\partial t}\left[e^{\left(i j+\xi^{2} t\right.} f(u)(3)\right]=0 \\
\therefore f(n)(3)=c_{1}(\xi) e^{-\left(i j+\xi^{2}\right) t}
\end{gathered}
$$

Applying the initial condition $n(x, 0)=\varphi(x)$ for all real x gives

$$
\begin{aligned}
& f(\varphi)(\xi)=f(u(\cdot, 0))(3)=c_{1}(3) e^{-\left(i \xi+3^{2}\right) 0}=c_{1}(3) \\
& \therefore \quad f(n)(\xi)=f(\varphi)(\xi) e^{-\xi^{2} t} \cdot e^{-i \xi t}
\end{aligned}
$$

Using table entry I. with $a=\frac{1}{4 t}$ yields

$$
\mathcal{F}_{1}\left(\frac{e^{-\frac{(1)^{2}}{4 t}}}{\sqrt{2 t}}\right)(3)=e^{-3^{2} t}
$$

Substituting this identity in the next-to-last equation produces

$$
f(u)(3)=f(\varphi)(x) F\left(\frac{e^{-\frac{(0)^{2}}{4 t}}}{\sqrt{2 E}}\right)(z) \cdot e^{-i \xi t}
$$

Since $f(f * g)(x)=\sqrt{2 \pi} f(f)(\xi) f(g)(x)$,

$$
\begin{aligned}
f(u)(3) & =\frac{1}{\sqrt{2 \pi}} f\left(\varphi * \frac{e^{-\frac{(0)^{2}}{4 t}}}{\sqrt{2 t}}\right)(3) \cdot e^{-i \xi t} \cdot \\
& =f\left(\varphi * \frac{e^{-\frac{(\cdot)^{2}}{4 t}}}{\sqrt{4 \pi t}}\right)(3) \cdot e^{-i \xi t}
\end{aligned}
$$

Using part (a) of this problem plus the inversion theorem, we find that

$$
\begin{aligned}
u(x, t) & =\left(\varphi * \frac{e^{\frac{-(\cdot)^{2}}{4 t}}}{\sqrt{4 \pi t}}\right)(x-t) \\
& =\int_{-\infty}^{\infty} \frac{e^{\frac{(x-t-y)^{2}}{4 t}}}{\sqrt{4 \pi t}} \varphi(y) d y
\end{aligned}
$$

${ }^{4} 5$. (separation of variables) We seek nontrivial solutions to the homogeneous part of the problem (1)-(2)-(3)-(5)) of the form $n(x, t)=X(x) T(t)$. Substituting in (1) yields $Z(x) T^{\prime \prime}(t)-Z^{\prime \prime}(x) T(t)=0 \Rightarrow \frac{-Z^{\prime \prime}(x)}{Z(x)}=\frac{-T^{\prime \prime}(t)}{T(t)}=$ constant $=\lambda$. Substituting in (2)-(3)-(5) we have
$X^{\prime}(0) T(t)=0=Z^{\prime}(1) T(t)$ for $t \geqslant 0$ and $Z(x) T^{\prime}(0)=0$ for $0 \leq x \leq 1$. Thus $\left\{\begin{array}{ll}X^{\prime \prime}(x)+\lambda \bar{X}(x)=0, & X^{\prime}(0)=0=\mathbb{Z}^{\prime}(1) \\ T^{\prime \prime}(t)+\lambda T(t)=0, & T^{\prime}(0)=0 .\end{array} \quad\right.$ Eigenvalue problem.

The cigenvalues/eigenfunctions are

$$
\lambda_{n}=(n \pi)^{2}, X_{n}(x)=\cos (n \pi x) \quad(n=0,1,2, \ldots)
$$

and the solutions to the t-problem with $\lambda=\lambda_{n}=(n \pi)^{2}$ are $T_{n}(t)=\cos (n \pi t)(n=0,1,2, \ldots)$
Consequently $n(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \cos (n \pi t)$ is a formal solution to (1)-(1)-(3)-(5) for any constants $a_{0}, a_{1}, a_{2}, \ldots$. We want to choose the constants to satisfy ($)$:

$$
\cos (3 \pi x)+3 \cos (\pi x)=n(x, 0)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \text { for } 0 \leq x \leq 1 \text {. }
$$

By inspection, $a_{1}=3, a_{3}=1$, and other coefficients should be zero. Thus
(a) $\quad u(x, t)=3 \cos (\pi x) \cos (\pi t)+\cos (3 \pi x) \cos (3 \pi t)$
(b) Suppose there is another solution to the problem m (a), say $u=v(x, t)$.

Consider $w(x, t)=u(x, t)-v(x, t)$ and its energy function

$$
E(t)=\int_{0}^{1}\left\{\frac{1}{2}\left[w_{t}(x, t)\right]^{2}+\frac{1}{2}\left[w_{x}(x, t)\right]^{2}\right\} d x \quad(t \geqslant 0) .
$$

observe that w solves the problem

$$
\left\{\begin{array}{l}
w_{t t}-w_{x x} \stackrel{(0)}{=} \quad \text { for } 0<x<1,0<t<\infty, \\
w_{x}(0, t) \stackrel{0}{=} 0 \stackrel{(0)}{=} w_{x}(1, t) \text { for } t \geq 0 \\
w(x, 0) \stackrel{(9)}{=} 0 w_{t}(x, 0) \text { for } 0 \leq x \leq 1 .
\end{array}\right.
$$

Differentiating the energy function, we find

$$
\begin{align*}
\frac{d E}{d t} & =\int_{0}^{1} \frac{\partial}{\partial t}\left\{\frac{1}{2}\left[w_{t}(x, t)\right]^{2}+\frac{1}{2}\left[w_{x}(x, t)\right]^{2}\right\} d x \\
& =\int_{0}^{1}\left\{w_{t}(x, t) w_{t t}(x, t)+w_{x}(x, t) w_{x t}(x, t)\right\} d x \\
& =\int_{0}^{1}\left\{w_{t}(x, t) w_{x x}(x, t)+w_{x}(x, t) w_{x t}(x, t)\right\} d x \quad \text { (from (6)) } \\
& =\int_{0}^{1} \frac{\partial}{\partial x}\left\{w_{t}(x, t) w_{x}(x, t)\right\} d x \\
& =\left.w_{t}(x, t) w_{x}(x, t)\right|_{x=0} \\
& =w_{x}(1, t) w_{t}(0, t)-w_{x}(0, t) w_{t}(0, t) \\
& =0 . \tag{7}
\end{align*}
$$

Therefore the energy is constant for all $t \geqslant 0$:

$$
0 \leq E(t)=E(0)=\int_{0}^{1}\left\{\frac{1}{2}\left[w_{t}(x, 0)\right]^{2}+\frac{1}{2}\left[w_{x}(x, 0)\right]^{2}\right\} d x=0 \quad \text { (from (9) and (10)) }
$$

By the vanishing theorem, $w_{t}(x, t)=w_{x}(x, t)=0$ for all $0 \leq x \leq 1$ and all $t \geq 0$, and hence $w(x, t)=$ constant. From (9) we see that this constant must be zero; ie. $u(x, t)-v(x, t)=w(x, t)=0$ for all $0 \leq x \leq 1,0 \leq t<\infty$. This shows that there is only one solution to the problem in (a).
\#6 (a) Since $f(x)=|x|$ is an even function, all its sine coefficients are zero.

$$
\begin{aligned}
& a_{0}=\frac{\langle f, 1\rangle}{\langle 1,1\rangle}=\frac{\int_{-\pi}^{\pi} f(x) d x}{\int_{-\pi}^{\pi} 1^{2} d x}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} x d x=\left.\frac{x^{2}}{2 \pi}\right|_{0} ^{\pi}=\frac{\pi}{2} . \\
& (n \geqslant 1) \quad a_{n}=\frac{\langle f, \cos (n \cdot)\rangle}{\langle\cos (n \cdot), \cos (n \cdot)\rangle}=\frac{\int_{-\pi}^{\pi} f(n) \cos (n x) d x}{\int_{-\pi}^{\pi} \cos ^{2}(n x) d x}=\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos (n \cdot) d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) d x \\
& =\left.\frac{2}{\pi}(x)\left(\frac{\sin (n x)}{n}\right)\right|_{0} ^{\pi}-\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin ((n x)}{n} d x=\left.\frac{-2}{\pi n}\left(-\frac{\cos (n x)}{n}\right)\right|_{0} ^{\pi}=\frac{\frac{(6-1)^{n}}{\cos (n \pi)}-2}{\pi n^{2}} \\
& =\left\{\begin{array}{l}
0 \text { if } n=2 k \text { is even, } \\
\frac{-4}{\pi(2 k+1)^{2}} \text { if } n=2 k+1 \text { is odd. } \quad \therefore f(x) \sim \frac{\pi}{2}+\sum_{k=0}^{\infty} \frac{-4 \cos ((2 k+1) x)}{\pi(2 k+1)^{2}}
\end{array}\right.
\end{aligned}
$$

(b) $\quad S(x)=\frac{\pi}{2}-\frac{4}{\pi} \cos (x)-\frac{4}{9 \pi} \cos (3 x)$.

(c) Yes, the full fowler series of f converges to f in the mean square sense on $[-\pi, \pi]$ because $\int_{-\pi}^{\pi}|f(x)|^{2} d x=\int_{-\pi}^{\pi} x^{2} d x=\frac{2 \pi^{3}}{3}<\infty$. (cf. Theorem 3)
(d) Yes, the full fourier series of f converges pointwise to f on $[-\pi, \pi]$ since f is continuous and 2π-periodic on $-\infty<x<\infty$, and f^{\prime} is piecewise continuous on $[-\pi, \pi]$. By Theorem tui), for all real x we have

$$
\begin{aligned}
\frac{\pi}{2}+\sum_{k=0}^{\infty} \frac{-4 \cos (2 k+1) x)}{\pi(2 k+1)^{2}} & =\frac{1}{2}\left[f_{\text {ext }}\left(x^{+}\right)+f_{\text {ext }}\left(x^{-}\right)\right] \\
& =\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right] \\
& =f(x) .
\end{aligned}
$$

(since f is 2π-periodic
(since f is continuous
(e) yes, the full Fourier series of f converges uniformly to f on $[-\pi, \pi]$, although

Theorem 2 cannot be used to justify this. (Note that $f(x)|=|x|$ does not satisfy the periodic boundary conditions $\varphi(-\pi)=\varphi(\pi)$ and $\varphi^{\prime}(-\pi)=\varphi^{\prime}(\pi)$ that generate the orthogonal system $\{1, \cos (n x), \sin (n x)\}_{n=1}^{\infty}$ used for full Fourier series.) To show uniform convergence, observe that

$$
\begin{aligned}
& \max _{-\pi \leq x \leq \pi}\left|f(x)-\left(\frac{\pi}{2}+\sum_{k=0}^{N}-\frac{4 \cos (2 k+1) x)}{\pi(2 k+1)^{2}}\right)\right| \stackrel{\max _{-\pi \leq x \leq \pi} \left\lvert\, \frac{\pi}{2}+\sum_{k=0}^{\infty} \frac{-4 \cos ((2 k+1) x)}{\pi(2 k+1)^{2}}-\frac{\pi}{2}+\sum_{k=0}^{N} \frac{4 \cos (2 k+1}{\pi(2 h+1}\right.}{=\max _{-\pi \leq x \leq+1}\left|\sum_{k=N+1}^{\infty} \frac{-4 \cos ((2 k+1) x)}{\pi(2 k+1)^{2}}\right| \leq \max _{-\pi \leq x \leq \pi}^{\infty} \sum_{k=N+1}^{\infty}\left|\frac{-4 \cot (2 k+1) x)}{\pi(2 k+1)^{2}}\right|}
\end{aligned}
$$

$\leq \frac{4}{\pi} \sum_{k=N+1}^{\infty} \frac{1}{(2 k+1)^{2}} \rightarrow 0$ as $N \rightarrow \infty$ (since it is the "tail" of the
series $\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}$, which is convergent by comparison with the p-series $\sum_{n=1}^{\infty} \frac{1}{n p}$ with $p=2$).
(f) Take $x=0$ in the identity obtained in part (d):

$$
0=f(0)=\frac{\pi}{2}+\sum_{k=0}^{\infty} \frac{-4 \frac{1}{\cos (0)}}{\pi(2 k+1)^{2}} \Rightarrow \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\left(-\frac{\pi}{2}\right)\left(\frac{\pi}{-4}\right)=\sqrt{\frac{\pi^{2}}{8}}
$$

(g) By the Parseral identity $\sum_{n=1}^{\infty}\left|A_{n}\right|^{2} \int_{a}^{b}\left|Z_{n}(x)\right|^{2} d x=\int_{a}^{b}|f(x)|^{2} d x$ and the results of part (a), we have

$$
\left|\frac{\pi}{2}\right|^{2} \int_{-\pi}^{\pi} 1^{2} d x+\sum_{k=0}^{\infty}\left|\frac{-4}{\pi(2 k+1)^{2}}\right|_{-\pi}^{2} \int_{-\pi}^{\pi} \cos ^{2}((2 k+1) x) d x=\int_{-\pi}^{\pi}|x|^{2} d x
$$

Evaluating the integrals gives

$$
\frac{\pi^{2}}{4} \cdot(2 \pi)+\sum_{k=0}^{\infty} \frac{16}{\pi^{2}\left(2 k+1_{1}\right)^{4}} \cdot(\pi)=\frac{2 \pi^{3}}{3} \Rightarrow \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}}=\frac{\pi^{4}}{96} .
$$

\#7 $u_{t}-k \nabla^{2} u=0$ mads heat flow. For steady-state $\underbrace{}_{\text {distributions, }} u_{t}=0$ for all x and t. Therefore we need to solve

$$
\left\{\begin{array}{l}
\nabla^{2} u \stackrel{Q}{=} \text { in } A=\{(r ; \theta): 1<r<2,-\pi \leq \theta<\pi\}, \\
u_{r}(1 ; \theta) \stackrel{(2)}{=} 0 \quad \text { for }-\pi \leq \theta<\pi, \\
u(2 ; \theta) \stackrel{(3)}{=}|\theta| \text { for }-\pi \leq \theta<\pi .
\end{array}\right.
$$

+1 (We also have the implied boundary conditions $u(r ; \pi) \stackrel{\oplus}{=} u(r ;-\pi)$ and $u_{\theta}(r ; \pi)^{\ominus} \stackrel{\oplus}{\theta}(r ;-\pi)$ for all $1<r<2$.) We use separation of variables; ie. we sack nontrivial solutions to the homogeneous portion of the problem ((1)-(2)-(4)-(5)) of the form $u(r ; \theta)=R(\sigma) \theta(\theta)$. Substituting in (1) gives

$$
\begin{aligned}
& 0=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=R^{\prime \prime}(r) \Theta(\theta)+\frac{1}{r} R^{\prime}(r) \Theta(\theta)+\frac{1}{r^{2}} R(r) \Theta^{\prime \prime}(\theta), \\
\Rightarrow & \frac{r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)}{R(r)}=\frac{-\Theta^{\prime \prime}(\theta)}{\Theta(\theta)}=\text { constant } x \lambda .
\end{aligned}
$$

Substituting in (2)-(4)-(5) gives

$$
R^{\prime}(1) \odot(\theta)=0 \text { for }-\pi \leqslant \theta<\pi \text { and } R(r) \Theta(\pi)=R(r) \Theta(-\pi), R(-) \Theta^{\prime}(\pi)=R(r) \Theta^{\prime}(-\pi)
$$ for $1<r<2$.

Consequently,

$$
\left\{\begin{array}{l}
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-\lambda R(r)=0, R^{\prime}(1)=0 \\
\Theta^{\prime \prime}(\theta)+\lambda \Theta(\theta)=0, \Theta(\pi)=\Theta(-\pi), \Theta^{\prime}(\pi)=\Theta^{\prime}(-\pi) .
\end{array} \leftarrow_{\text {Eigenvalue }}^{\text {Problem }}\right.
$$

The eigenudues / eigexfunctions are

$$
\lambda_{n}=n^{2}, \Theta_{n}(\theta)=a_{n} \cos (n \theta)+b_{n} \sin (n \theta) \quad(n=0,1,2, \cdots) .
$$

Retwoming to the radial problem with $\lambda=\lambda_{n}=n^{2}$ we have

$$
r^{2} R_{n}^{\prime \prime}(r)+r R_{n}^{\prime}(r)-n^{2} R_{n}(r)=0, \quad R_{n}^{\prime}(1)=0 .
$$

The general solution to the ODE is $R_{n}(r)=c_{1} r^{n}+c_{2}{ }^{-n}$ when $n \geqslant 1$ and
$R_{0}(r)=c_{1}+c_{2} \ln (r)$ when $n=0$. if $n \geqslant 1$ then $R_{n}^{\prime}(r)=n c_{1} r^{n-1}-n c_{2} r^{n-1}$ so
$0=R_{n}^{\prime}(1)=n e_{1}-n c_{2} \Rightarrow c_{1}=c_{2}$. If $n=0$, then $R_{0}^{\prime}(r)=\frac{c_{2}}{r}$ so $0=R_{0}^{\prime}(1)=\frac{c_{2}}{1}$
two $\quad \Rightarrow c_{2}=0$. Thus, up to a constant multiple, $R_{n}(r)=r^{n}+r^{-n}(n \geqslant 1)$ and $R_{0}(r)=1$.
Consequently

$$
+22
$$

$$
u(r ; \theta)=a_{0}+\sum_{n=1}^{\infty}\left(r^{n}+r^{-n}\right)\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)
$$

is a formal solution to (1)-(2)-(4)-(5) for arbitrary constants $a_{0}, a, b, a_{2}, b_{2}, \ldots$ We need to choose the constants so (3) is satisfied:

$$
|\theta|=u(2 ; \theta)=a_{0}+\sum_{n=1}^{\infty}\left(2^{n}+2^{-n}\right)\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right) \quad \text { for }-\pi \leq \theta<\pi \text {. }
$$

from problem 6(d) we know that

$$
|\theta|=\frac{\pi}{2}+\sum_{k=0}^{\infty} \frac{-4 \cos ((2 k+1) \theta)}{\pi(2 k+1)^{2}} \quad \text { for }-\pi \leq \theta \leq \pi \text {. }
$$

Therefore we need to choose

$$
a_{0}=\frac{\pi}{2}, \quad\left[2^{2 k+1}+2^{-(2 k+1)}\right] a_{2 k+1}=\frac{-4}{\pi(2 k+1)^{2}} \text { for } k=0,1,2, \ldots,
$$

and all other a_{n} and b_{n} equal to zero. Thus
$+: 8$

$$
\left.u(r ; \theta)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\left(r^{2 k+1}+r^{-(2 k+1)}\right) \cos ((2 k+1) \theta)}{\left(2^{2 k+1}+2^{-(2 k+1)}\right)(2 k+1)^{2}} \right\rvert\, .
$$

This can also be expressed as

$$
u(r ; \theta)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cosh ((2 k+1) \ln (r)) \cos ((2 k+1) \theta)}{\cosh ((2 k+1) \ln (2))(2 k+1)^{2}} .
$$

