1.(25 pts.) (a) Solve the equation $\cos (x) u_{x}+y \sin (x) u_{y}=0$ subject to $u(0, y)=e^{-y^{2}}$ for $-\infty<y<\infty$.
(b) In which region of the $x y$-plane is the solution uniquely determined?

20pts. (a) Along the characteristic curves of the PDE, described by $\frac{d y}{d x}=\frac{y \sin (x)}{\cos (x)}$, ${ }^{3 p t s . t a n e}$ the solution u is concent. Then $\frac{1}{y} d y=\frac{\sin (x) d x}{\cos (x)} \Rightarrow \ln |y|=-\ln |\cos (x)|$. $\Rightarrow \ln |y \cos (x)|=c \Rightarrow y \cos (x)= \pm e^{c}=A \Rightarrow y=A \sec (x)$. (characteristic 9 pto to here. Cures)
Along a chrecteridic curve, $u(x, y)=u(x, A \sec (x))=u(0, A)=f(A)$. Thus the general solution is $u(x, y)=f^{15}(y \cos (x))$ wherever f is a C^{\prime}-function of a single real variable. Applying the auxiliary combition yields

$$
\begin{aligned}
& e^{-y^{2}}=u(0, y)=f(y \cos (0))=f^{17}(y) \text { pts, to here. } \text { for ale real } y . \\
\therefore \quad & u(x, y)=f(y \cos (x))=e^{-y^{2} \cos ^{2}(x)} \text { 20 pts. to here. }
\end{aligned}
$$

5 pts. (b)

The characteristic curves "pave" the strip,

$$
S:-\pi / 2<x<\pi / 2,-\infty<y<\infty .
$$

Therefore the solution is unifudy determined in S.

$$
B^{2}-4 A C=(-3)^{2}-4(1)(-4)>0
$$

2.(25 pts.) Consider the partial differential equation $u_{x y}-3 u_{x y}-4 u_{y y}=0$.
(a) Classify its order and type (linear, nonlinear, homogeneous, inhomogeneous, parabolic, etc.).
(b) Find, if possible, its general solution in the $x y$-plane.
(c) Find, if possible, its solution which satisfies $u(x, 0)=x^{3}$ and $u_{y}(x, 0)=-3 x^{2}$ if $-\infty<x<\infty$.

5pts. (a) The PDE is second-ader, linear, homogemens), and of hyperbolic type.
10 pts. (b)

$$
\text { b) } \begin{aligned}
& \left(\frac{\partial^{2}}{\partial x^{2}}-3 \frac{\partial^{2}}{\partial x \partial y}-4 \frac{\partial^{2}}{\partial y^{2}}\right) u=0 \\
& \therefore \quad 5 \frac{\partial}{\partial \eta}\left(\frac{5}{\partial \xi}\right) u=0 \\
& \Rightarrow \quad \frac{\partial}{\partial \eta}\left(\frac{\partial u}{\partial z_{\xi}}\right)=0 \quad 6 \text { pes to. there. } \\
& \text { here. } \\
& \left.\Rightarrow \quad \frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}-4 \frac{\partial}{\partial y}\right) u=0 \\
& \Rightarrow \quad \frac{\partial u}{\partial \xi}=\int 0 d \eta+c_{1}(\xi) \\
& \Rightarrow \quad u=\int c_{1}(\xi) d \xi+c_{2}(\eta) \\
& \therefore \quad u=f(\xi)+g(\eta) \cdot 8 \text { pts. to here. }
\end{aligned}
$$

$\therefore \mid u(x, y)=f(x-y)+g(4 x+y)$ where f and g are c^{2}-functions of a single neal variable. copts. to here

10pts. (c)

$$
u_{y}(x, y)=-f^{\prime}(x-y)+g^{\prime}(4 x+y) \text { so }
$$

$$
\begin{equation*}
-3 x^{2}=u_{y}(x, 0)=-f^{\prime}(x)+g^{\prime}(4 x) \text { for all ned } x \text {. 2, ts. to here } \tag{*}
\end{equation*}
$$

(t) $\quad x^{3}=u(x, 0)=f(x)+g(4 x)$ "."."
$(* *) \Rightarrow 3 x^{2}=f^{\prime}(x)+4 g^{\prime}(4 x)$
adding (x) and (kkk) yields $0=5 g^{\prime}(4 x)$ feral neal x $\Rightarrow g(x)=c$ 6pts to herr for all real x. Substituting in (f) gives) $x^{3}=f(x)+c$. \& pts. to here.

$$
\begin{aligned}
\therefore \quad u(x, y) & =f(x-y)+g(4 x+y)=(x-y)^{3}-c+c \\
u(x, y) & =(x-y)^{3} \quad \text { pts. to here. }
\end{aligned}
$$

3.(25 pts.) A homogeneous solid material occupying $D=\left\{(x, y, z) \in \mathbb{R}^{3}: 4 \leq x^{2}+y^{2}+z^{2} \leq 100\right\}$ is completely insulated and its initial temperature at position (x, y, z) in D is $200 / \sqrt{x^{2}+y^{2}+z^{2}}$.
(a) Write (without proof or derivation) the partial differential equation and initial/boundary conditions that completely govern the temperature $u(x, y, z, t)$ at position (x, y, z) in D and time $t \geq 0$.
(b) Use Gauss' divergence theorem to help show that the heat energy $H(t)=\iiint_{D} c \rho u(x, y, z, t) d V$ of the material in D at time t is a constant function of time. Here c and ρ denote the (constant) specific heat and mass density, respectively, of the material in D.
Bonus (10 pts.). Compute the (constant) steady-state temperature that the material in D reaches after a long time.

$$
\text { 15pts. (a) }\left\{\begin{array}{l}
u_{t}-k \nabla^{2} u=0 \quad \text { if } 4<x^{2}+y^{2}+z^{2}<100 \text { and } 0<t<\infty, \\
\frac{\partial u}{\partial x}=0 \text { if } t \geqslant 0 \text { and } x^{2}+y^{2}+z^{2}=4 \text { or } x^{2}+y^{2}+z^{2}=100, \tag{5}\\
u(x, y, z, 0)=\frac{2}{\sqrt{x^{2}+y^{2}+z^{2}}} \text { if } 4 \leq x^{2}+y^{2}+z^{2} \leq 100 .
\end{array}\right.
$$

$$
\begin{align*}
10 \text { pts. (b) } \quad \frac{d H}{d t}=\iiint_{D} \frac{\partial}{\partial t}(c \rho u(x, y, z, t)) d V=\iiint_{D} c \rho u d V=\iiint_{D} c p k \nabla^{2} u d V=\iiint_{D} c p k \nabla \cdot(\nabla u) d t \tag{5}\\
=c \rho k \iint_{D D} \nabla u \cdot \vec{n} d S=c \rho k \iint_{D} \frac{\partial u^{0}}{\partial n} d V=0 \text {. Therefore } H(t)=\text { constant for } a l l t \geqslant c \\
\text { copts, to here. }
\end{align*}
$$

10 pts. Bonus: Let $U_{0}=\lim _{t \rightarrow \infty} u(x, y, z, t)$ he the oterady-atate temperature of the material ins I
Then $H(0)=\lim _{t \rightarrow \infty} H(t)=\lim _{t \rightarrow \infty} \iiint_{D} c \rho u(x, y, z, t) d V=\iiint_{D} c p U_{0} d V=c \rho U_{0} \cdot v a l(D)$. pt. to here.
But $v o l(D)=\frac{4}{3} \pi\left(R_{2}^{3}-R_{1}^{3}\right)=\frac{4}{3} \pi\left(10^{3}-2^{3}\right)=\frac{4 \text { pts. there }}{3}$ and $H(0)=\iiint_{D} c p u(x, y, z, 0) d$ $=\iiint_{D} c \rho \frac{200}{\sqrt{x^{2}+y^{2}+z^{2}}} d r=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{2}^{10} c \rho \frac{200}{r} r^{2} \sin \varphi d r d \rho d \theta=\left.\int_{0}^{2 \pi} \int_{0}^{\pi} c \rho 100 r^{2}\right|_{r=2} ^{10^{D}} \sin \varphi d \varphi d \theta$ $=\left.9600 \mathrm{cp}(-\cos \varphi)\right|_{\varphi=0} ^{\pi} \cdot 2 \pi=\begin{aligned} & 7 p t s . \text { t. here. } \\ & 38,400 c p \pi\end{aligned}$. Thus $38,400 \phi \phi \phi^{t}=\phi \phi V_{0} \frac{4}{3} .992 \not \subset$ $\Rightarrow U_{0}=\frac{3}{4.992} \cdot 38,400=\frac{900}{31} \cong 29$. opts. to here.
4.(25 pts.) Use Fourier transform methods to find a solution to

$$
u_{x x}+u_{y y} \Phi_{0} \quad \text { for } \quad-\infty<x<\infty, 0<y<\infty
$$

which satisfies

$$
u(x, 0) \stackrel{\varrho}{=} \begin{cases}1 & \text { if }|x|<1 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\lim _{y \rightarrow \infty} u(x, y) \stackrel{(3)}{=} \text { for each } x \text { in }(-\infty, \infty)
$$

The take the fourier transform of (1) with respect to the rariahlex:

4 pts.
to here

$$
\begin{aligned}
& f\left(u_{x x}+u_{y y}\right)(\xi)=f(0)(\xi) \\
& (i \xi)^{2} f(u)(\xi)+\frac{\partial^{2}}{\partial y^{2}}(u)(\xi)=0 \\
& \frac{\partial^{2}}{\partial y^{2}} f(u)(\xi)-\xi^{2} f(u)(\xi)=0 .
\end{aligned}
$$

The general solution to this second-orlar linear hamoganems ODE in the variable y, with 8 pts.
sere. as a parameter, is $f(n)(5)=c_{1}(3) e^{3 y}+c_{2}(x) e^{-5 y}$. the apply (3) to get

$$
\lim _{y \rightarrow \infty}\left(c_{1}(\xi) e^{5 y}+c_{2}(3) e^{-3 y}\right)=\lim _{y \rightarrow \infty} f_{1}(u)(\xi)=\lim _{y \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x, y) e^{-i \xi x} d x=\frac{1}{2-\pi} \int_{-\infty}^{\infty}\left(\lim _{y \rightarrow \infty} u(x, y)\right) e^{-i j y} d x
$$

$=0$. Comider first the cone when $\xi>0$. If $c_{1}(\xi) \neq 0$ then $\lim _{y \rightarrow \infty}\left(c_{1}(\xi) e^{3 y}+c_{2}(s) e^{-3 y}\right)$ $=\lim _{y \rightarrow \infty}\left(c,() e^{\xi y}\right)= \pm \infty$, depending on the algebraic sign of $c_{1}(\xi)$. Since this cabradicts the fact that the limit mist he 0 , it follow that $c_{1}(\xi)=0$ if $\xi>0$. A similar argument shows that $c_{2}(\xi)=0$ if $3<0$. Consequently,

12 pts.
to here.

Evaluating (k) at $y=0$ and applying (2) given

$$
\begin{aligned}
& 15 \text { pts. }(* *) \quad c(\xi)=\left.f(u)(\xi)\right|_{y=0}=f(u(0,0))(\xi)=f\left(x_{(-1,1)}\right)(\xi) \text {. (OVER) } \\
& \text { to here. }
\end{aligned}
$$

By entry C in the table of fourier transforms accompanying this exams, 17 pts. $(* * *) \quad f\left(\frac{1}{(\cdot)^{2}+y^{2}}\right)(\xi)=\sqrt{\frac{\pi}{2}} \cdot \frac{e^{-t \xi l y}}{y}$ so $f\left(\sqrt{\frac{2}{\pi}} \cdot \frac{y}{(\cdot)^{2}+y^{2}}\right)(\xi)=e^{-k l y}$. to here.

Substituting from (**) and ($* * *$) into (*) givers

$$
\begin{aligned}
f(u)(\xi) & =f\left(\underset{(-1,1)}{x}(\xi) f\left(\sqrt{\frac{2}{\pi}} \cdot \frac{y}{(\cdot)^{2}+y^{2}}\right)(\xi)\right. \\
& =\frac{1}{\sqrt{2 \pi}} f_{1}\left(x_{(-1,1)} * \sqrt{\frac{2}{\pi}} \cdot \frac{y}{(\cdot)^{2}+y^{2}}\right)(3) \\
& =f\left(\frac{1}{\pi} x_{(-1,1)} * \frac{y}{(\cdot)^{2}+y^{2}}\right)(\xi) .
\end{aligned}
$$

20 pts.
to here
tohere.
Applying the inversion theorem,

21 pts.

$$
u(x, y)=\left(\frac{1}{\pi} x_{(-1,1)} * \frac{y}{(i)^{2}+y^{2}}\right)(x)
$$

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-z)^{2}+y^{2}} x_{(-1,1)}(z) d z \\
& =\frac{1}{\pi} \int_{-1}^{1} \frac{y}{(x-z)^{2}+y^{2}} d z \\
& =\frac{1}{\pi} \int_{-1-x}^{1-x} \frac{y}{s^{2}+y^{2}} d s \\
& =\left.\frac{1}{\pi} \operatorname{Arctan}\left(\frac{s}{y}\right)\right|_{s=-1-x} ^{1-x} \\
& =\frac{1}{\pi} \operatorname{Arctan}\left(\frac{1-x}{y}\right)+\frac{1}{\pi} \operatorname{Arctan}\left(\frac{1+x}{y}\right)
\end{aligned}
$$

to here.
(2)-(3) $u_{x}(0, y, z)=0=u_{x}(1, y, z)$ is $0 \leq y \leqslant 1,0=t 21$
(4)-(5) $u_{z}(x, y, 0)=0=u_{z}(x, y, 1)$ if $0 \leqslant x \leq 1,0 \leq y \leq 1$
(6) $u_{y}(x, 1, z)=0$ it $0 \leq x \in 1,0 \leq z$: (1)
5.(25 pts.) Solve $\nabla^{2} u=0$ in the cube $0<x<1,0<y<1,0<z<1$ given that u satisfies the inhomogeneous Dirichlet condition $u(x, 0, z)=\frac{2}{=} 4 \sin ^{2}(\pi x) \sin ^{2}(\pi z)$ if $0 \leq x \leq 1,0 \leq z \leq 1$, and u. satisfies homogeneous Neumanm boundary conditions on the other five faces. (Hint: You may find the identity $2 \sin ^{2}(\theta)=1-\cos (2 \theta)$ useful.)

1 pe . to here.
The reck nontrivial solution of the form $n(x, y, z)=\bar{Z}(x) Y_{(y)} Z(z)$ to the homogeneous portion of this problem : (1)-(2)-(3)-(4)-(3)-(6). Substituting into (1) leads to

$$
\bar{X}^{\prime \prime}(x) \bar{Y}(y) Z(z)+\bar{Y}^{\prime}(x) \Psi^{\prime \prime}(y) Z(z)+\Psi(x) Y^{\prime \prime}(y) Z^{\prime \prime}(z)=0 \Rightarrow \frac{-\bar{X}^{\prime \prime}(x)}{\bar{Z}(x)}=\frac{\Psi^{\prime \prime}(y)}{\bar{Y}(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}=\lambda,
$$

and then to $-\frac{Z^{\prime \prime}(z)}{Z^{\prime}(z)}=\frac{Y^{\prime \prime}(y)}{Y^{\prime}(y)}-\lambda=\mu$. Substituting in (2),(3),(4), (5), and (6) and using the assumption that $X(x) Y(y) Z(z)$ is not identically O or the units cube yields $Z^{\prime}(0)=0=Z^{\prime}(1), Z^{\prime}(0)=0=Z^{\prime}(1)$, and $\bar{Z}^{\prime}(1)=0$. Thaw

$$
\text { (*) } \begin{cases}Z^{\prime \prime}(x)+\lambda \Psi(x)=0, & Z^{\prime}(0)=0=Z^{\prime}(1), \\ Z^{\prime \prime}(z)+\mu Z(z)=0, & 4 \text { pts. to here. } \\ Z^{\prime}(0)=0=Z^{\prime}(1), & 7 \text { pts. to here } \\ Y^{\prime \prime}(y)-(\lambda+\mu) I(y)=0, Y^{\prime}(1)=0 . & 9 \text { pts. to here. }\end{cases}
$$

The eigenvalue problems in the first two lines of

$$
\begin{array}{ll}
\lambda_{l}=(l \pi)^{2}, \quad X_{l}(x)=\cos (l \pi x) \quad(l=0,1,2, \ldots) \quad 12 \text { pts. to here. } \\
\mu_{m}=(m \pi)^{2}, \quad Z_{m}(z)=\cos (m \pi z) \quad(m=0,1,2, \ldots) \quad 15 \text { pts. to here. }
\end{array}
$$

Substituting $\lambda+\mu=\lambda_{l}+\mu_{m}=\pi^{2}\left(l^{2}+m^{2}\right)$ in the $D E$ in the third line of $(*)$ and 17 pts. applying the B.C. yields $Y_{l, m}(y)=\cosh \left(\pi(y-1) \sqrt{l^{2}+m^{2}}\right)$, up to a constant factor. to here.

19 pts.
to here.
Thus the superposition principle implies that
(*) have solutions)

$$
\begin{aligned}
& \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} A_{l, m} \cosh \left(-\pi \sqrt{l^{2}+m^{2}}\right) \cos (l \pi x) \cos (m \pi z)=n(x, 0, z) \\
&=4 \sin ^{2}(\pi x) \sin ^{2}(\pi z) \\
&=[1-\cos (2 \pi x)][1-\cos (2 \pi z)] \\
&=1-\cos (2 \pi x)-\cos (2 \pi z)+\cos (2 \pi x) \cos (2 \pi z)
\end{aligned}
$$

mist hold for ale $0 \leq x \leq 1$ and $0 \leq 3 \leq 1$. Consequently, equating "like" coefficients produces

$$
\begin{aligned}
& A_{0,0}=1 \\
& A_{2,0} \cosh (-2 \pi)=-1
\end{aligned}
$$

$$
A_{0,2} \cosh (-2 \pi)=-1
$$

$$
A_{2,2} \cosh (-2 \pi \sqrt{2})=1
$$

$$
\begin{aligned}
A_{0,0} & =1 \\
\Rightarrow \quad A_{2,0} & =\frac{1}{\cosh (2 \pi)}=A_{0,2} \\
A_{22} & =\frac{1}{\cosh (2 \pi \sqrt{2})}
\end{aligned}
$$

and all other $A_{l, m}=0$. That is,

$$
\begin{gathered}
25 \text { pts. } \\
\text { to here. }
\end{gathered} u(x, y, z)=1-\frac{\cos (2 \pi x) \cosh (2 \pi(y-1))}{\cosh (2 \pi)}-\frac{\operatorname{con}(2 \pi z) \cosh (2 \pi(y-1))}{\cosh (2 \pi)}+\frac{\cos (2 \pi x) \cos (2 \pi z) \cosh (2 \pi(y-1))}{\cosh (2 \pi \sqrt{z})}
$$

solves (1)-(2)-(3)-(4)-(3)-(b)-(7).
6.(25 pts.) ${ }^{8}$ (a) Show that the full Fourier series of $f(x)=x^{3}-x$ on $[-1,1]$ is $\sum_{n=1}^{\infty} \frac{12(-1)^{n} \sin (n \pi x)}{(\pi n)^{3}}$.

7 (b) Show that the full Fourier series of f converges uniformly to f on $[-1,1]$.
5 (c) Use the results above to help compute the sum of the series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3}}$.
5 (d) Use Parseval's identity and the results above to help compute the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$.
(a) The full fourier series) of f is $a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+\dot{b}_{n} \sin (n \pi x)\right]$ what

$$
\begin{aligned}
& \begin{array}{l}
\text { Rpt. } \\
\text { there. }
\end{array} a_{0}=\frac{\langle f, 1\rangle}{\langle 1,1\rangle}=\frac{1}{2} \int_{-1}^{1}(\underbrace{x^{3}-x}_{\text {odd }}) d x=0, \\
& \begin{array}{l}
\text { opts. } \\
\text { to here. }
\end{array} a_{n}=\frac{\langle f, \cos (n \pi \cdot)\rangle}{\langle\cos (n \pi \cdot), \cos (n \pi \cdot)\rangle}=\int_{-1}^{1} \underbrace{x^{3}-x}_{\text {odd }}) \underbrace{\cos (n \pi x)}_{\text {vern }} d x=0 \quad \text { for } n=1,2,3, \ldots \text {, }
\end{aligned}
$$

$$
\therefore f(x) \sim \sum_{n=1}^{\infty} \frac{12(-1)^{n} \sin (n \pi x)}{(n \pi)^{3}} \text {. Spots. to here }
$$

(b) The set of orthogonal functions for the fall focivies service of for $[-1,1]$ is $\Phi=\{1, \cos (\pi x), \sin (\pi x), \cos (2 \pi x), \sin (2 \pi x), \ldots\}$, and this is the conplde set of eigenfunction for the problem $-\mathbb{Z}^{\prime \prime}(x)=\lambda \bar{X}(x)$ with periodic boundary conditions $\underbrace{X(1)=\bar{X}(-1) \text { and } X^{\prime}(1)=X^{\prime}(-1)}$. The function $f(x)=x^{3}-x$ is symmetric (or hermitian) B.C.s.

$$
\begin{aligned}
& =-\frac{12}{(n \pi)^{2}} \int_{0}^{1} \frac{v}{x} \frac{d v}{\sin (n \pi x) d x}=\left.\frac{-12}{(n \pi)^{2}} x\left(-\frac{\cos (n \pi x)}{n \pi}\right)\right|_{0} ^{1}+\frac{12}{(n \pi)^{2}} \int_{0}^{1}-\frac{\operatorname{con}(n \pi x)}{n \pi} d x=\frac{12(-1)^{n}}{(n \pi)^{3}} \text {. } 7 \text { pts. to her }
\end{aligned}
$$

continuous on $[-1,1]$ and has derivatives $f^{\prime}(x)=3 x^{2}-1$ and $f^{\prime \prime}(x)=6 x$ 3 pos. tonece. which are also continuous on $[-1,1]$. Note that f satisfies the periodic 5pts. to here. B.C.' son $[-1,1]$: $f(1)=0=f(-1)$ and $f^{\prime}(1)=2=f^{\prime}(-1)$. Therefore ps. to here. Theorem 2 (ow the "Conuorgance Theorems" attached to thinsxam) inghis that the Fourier series of f converges to f uniformly on $[-1,1]$.

1 ire.
(c) $x^{3}-x=f(x)=\sum_{n=1}^{\infty} \frac{12(-1)^{n} \sin (n \pi x)}{(n \pi)^{3}}$ for all $-1 \leq x \leq 1$. Set $x=1 / 2$ in this identity $n=1$ to obtain
2 pis.
to here

$$
\begin{aligned}
-\frac{3}{8}=\left(\frac{1}{2}\right)^{3}-\frac{1}{2} & =\sum_{n=1}^{\infty} \frac{12(-1)^{n} \sin (n \pi / 2)}{(x \pi)^{3}} \\
& =\sum_{k=0}^{\infty} \frac{12(-1)^{2 k+1} \sin ((2 k+1 \pi / 2)}{((2 k+1) \pi)^{3}} \\
\Rightarrow-\frac{3}{8} & =-\sum_{k=0}^{\infty} \frac{12(-1)^{k}}{[(2 k+1) \pi]^{3}} \\
5 \text { pts. there re. } & \Rightarrow \frac{\pi^{3}}{32}=\left(-\frac{\pi^{3}}{12}\right)\left(-\frac{3}{8}\right)=\sum_{k=0} \frac{(-1)^{k}}{(2 k+1)^{3}} .
\end{aligned}
$$

$$
\begin{array}{l|c}
2 k & 0 \\
2 k+1 & (-1)^{k}
\end{array}
$$

(d) By Parseusdi' identity, $\left|a_{0}\right|^{2} \int_{a}^{b} 1^{2} d x+\sum_{n=1}^{\infty}\left(\left|a_{n}\right|^{2} \int_{a}^{b} \cos ^{2}(n \pi x) d x+\left|b_{n}\right|^{2} \int_{a}^{b} \sin ^{2}(n \pi x) d x\right)=$
pts.
t. here. $\int_{a}^{b}|f(x)|^{2} d x$. Applying this to our cure produces $\sum_{n=1}^{\infty}\left|\frac{\mid 2(-1)^{n}}{(n \pi)^{3}}\right|^{2} \int_{-1}^{1} \sin ^{2}(n \pi x \mid) d x=\int_{-1}^{1}\left|x^{3}-x\right|^{2} d$

$$
\begin{aligned}
& \text { But } \int_{-1}^{1} \sin ^{2}(n \pi x) d x=\int_{-1}^{1}\left(\frac{1}{2}-\frac{1}{2} \cos (2 \pi n x)\right) d x=1 \text { and } \int_{-1}^{1}\left|x^{3}-x\right|^{2} d x=2 \int_{0}^{1}\left(x-x^{3}\right)^{2} d x \\
& =2 \int_{0}^{1}\left(x^{2}-2 x^{4}+x^{6}\right) d x=\left.2\left(\frac{x^{3}}{3}-\frac{2 x^{5}}{5}+\frac{x}{7}\right)\right|_{0} ^{1}=2\left(\frac{1}{3}-\frac{2}{5}+\frac{1}{7}\right)=\frac{16}{105} \text {. Thus } \\
& \frac{(12)^{2}}{\pi^{6}} \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{16}{105} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{16}{105} \cdot \frac{\pi^{6}}{16 \cdot 9}=\frac{\pi^{6}}{945} .5 \text { pts. A ieee. }
\end{aligned}
$$

7.(25 pts.). Solve

$$
u_{t}-u_{x x}=0 \text { in }-1<x<1,0<t<\infty
$$

subject to the boundary conditions

$$
u(1, t) \stackrel{(2)}{=} u(-1, t) \text { and } u_{x}(1, t) \stackrel{(3)}{=} u_{x}(-1, t) \text { if } t \geq 0
$$

and the initial condition

$$
u(x, 0) \stackrel{\oplus}{=}_{x^{3}}-x \text { if }-1 \leq x \leq 1
$$

(Hint: You may find the results of problem 6 useful.)
Bonus (10 pts.). Show that the solution to the problem above is unique.
He suck nontrivial ablutions of (1)-(2)-(3) of the form $u(x, t)=X^{2}(x) T(t)$. Substituting into (1) yields $T^{\prime}(t) X(x)-T(t) X^{\prime \prime}(x)=0 \Rightarrow \frac{T^{\prime}(t)}{T(t)}=\frac{\bar{X}^{\prime \prime}(x)}{X(x)}=-\lambda$. Sulshitutiong into (2)-(3) yields $\bar{Z}(1) T(t)=Z(-1) T(t)$ and $Z^{\prime}(1) T(t)=\nabla^{\prime}(-1) T(t)$ for all $t \geqslant 0$. But $u(x, t)=\bar{Z}(x) T(t)$ is not identically yo so
(*) $\begin{cases}Z^{\prime \prime}(x)+\lambda Z(x)=0, Z(1)=X(-1), Z^{\prime}(1)=Z^{\prime}(-1), & 8 \text { pts. to here. } \\ T^{\prime}(t)+\lambda T(t)=0 . & 10 \text { pts. to here. }\end{cases}$
12 Ms. to here The eigenvalue prohlend in the first line of ($*$) has solutions $\lambda=\lambda_{n}=(n \pi)^{2}$ and 14 as to here. $Z_{n}(x)=a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x) \quad\left(n=0,1,2, \ldots\right.$ and a_{n}, b_{n} arbitrary constants $)$. Setting 16 pts.to here. $\lambda=\lambda_{n}=(n \pi)^{2}$ in the second line of (k) and solving yields $T_{n}(t)=e^{-(n \pi)^{2} t}$, ry ta a a constant foetor). Thus

18 pts. to here.

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(n \pi_{x}\right)+b_{n} \sin (n \pi x)\right] e^{-(n \pi)^{2} t}
$$

is a formal volution to (1)-(2)-(3) far any choice of constants $a_{0}, a_{1}, b_{1}, a_{3}, b_{2}, \ldots$ the want to chose these constants so 4 is init. Using the full fourier series for $f(x)=x^{3}-x$ in $[-1,1]$ from problem 6 yields

$$
a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]=u(x, 0)=x^{3}-x=\sum_{n=1}^{\infty} \frac{12(-1)^{n} \sin (n \pi x)}{(n \pi)^{3}} \quad \text { for }-1 \leqslant x \leqslant 1
$$

23 pts. Therefore choose $b_{n}=\frac{12(-1)^{n}}{\left(\pi_{n}\right)^{3}}$ for $n=1,2,3, \ldots$ and all other coefficients 0 . Therefore a adution of (0)-(2)-(3)-(4) is

25 第s.

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{12(-1)^{n} \sin (n \pi x) e^{-(n \pi)^{2} t}}{(\pi n)^{3}} \quad \text { (OVER for bonus) } \quad \text {. }
$$

Bonus
Jo show that this solution is unique, suppose that $v=v(x, t)$ is any other solution of (1)-(2)-(3)-(4) and cmuilev $w(x, t)=u(x, t)-v(x, t)$. Then w satiafies
(1) $w_{t}-w_{x x}=0$ if $-1<x<1,0<t<\infty$,

3 pts.
(2)-(3) w(1,t) $=w(-1, t)$ and $w_{x}(1, t)=w_{x}(-1, t)$ if $t \geqslant 0$,
topee
(4) $w(x, 0)=0$ if $-1 \leq x \leq 1$.

Gps. Comines the energy $E(t)=\int_{-1}^{1} w^{2}(x, t) d x$ of this solution at t in $[0, \infty)$. Then
tonere.

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{-1}^{1} \frac{\partial}{\partial t}\left[w^{2}(x, t)\right] d x=\int_{-1}^{1} 2 w(x, t) w_{t}(x, t) d x=\int_{-1}^{1} \frac{U}{2 w(x, t)} \frac{d V}{w_{x x}(x, t) d x} \\
& =\underbrace{2 w(1, t) w_{x}(1, t)-2 w(-1, t) w_{x}(-1, t)-\left(3^{0}\right.}_{0}-2 \int_{-1}^{1} w_{x}^{2}(x, t) d x \\
& =-2 \int_{-1}^{1} w_{x}^{2}(x, t) d x \\
& \leqslant 0 .
\end{aligned}
$$

8pts. Therefore $E=E(t)$ is a decreasing function on $[0, \infty)$, so for $t \geq 0$,
to here.

$$
0 \leq E(t) \leq E(0)=\int_{-1}^{1} w^{2}(0, x) d x=\int_{-1}^{1} 0 d x=0 \quad(\ln y) \text { (4) } .
$$

By the vanishing theorem, the nonnegative continuous integrand of $E(t)$ must be identically zero on $-1 \leqslant x \leqslant 1$ for each $t \geqslant 0$. Shat is,

10 pts .

$$
0=w(x, t)=u(x, t)-v(x, t) \quad \text { pov-1 } \leq x \leq 1 \text { and } 0 \leq t<\infty \text {. }
$$

to here.
Hence the solution to (1)-(2)-(3)-(4) is unique.
8.(25 pts.) (a) Solve $\nabla^{2} u=0$ inside the unit disk, subject to the boundary condition

$$
u(1 ; \theta)=\left\{\begin{array}{rc}
1 & \text { if } \quad 0<\theta<\pi \\
-1 & \text { if }-\pi<\theta<0, \\
0 & \text { if } \quad \theta=0 \text { or } \pi
\end{array}\right.
$$

5 (b) What is the value of the solution to part (a) at the center of the disk? Support your answer.
$4 d_{s}$. (a) Poisson's formula, $u(r ; \theta)=\frac{a^{2}-r^{2}}{2 \pi} \int_{-\pi}^{\pi} \frac{h(\varphi) d \varphi}{a^{2}-2 \operatorname{arcos}(\theta-\varphi)+r^{2}}$, applied
to here. to this case yields

10 pts. to here.

$$
u(r ; \theta)=\frac{1-r^{2}}{2 \pi}\left[\int_{-\pi}^{0} \frac{-1 d \varphi}{1-2 r \cos (\varphi-\theta)+r^{2}}+\int_{0}^{\pi} \frac{1 d \varphi}{1-2 r \cos (\varphi-\theta)+r^{2}}\right]
$$

Making use of the integration fact $\int \frac{d \psi}{A+B \cos (\psi)}=\frac{2}{\sqrt{A^{2}-B^{2}}} \operatorname{Arctan}\left(\tan (\psi / 2) \sqrt{\frac{A-1}{A+1}}\right.$ 12 pts. to here.

16 pts. to here.
if $A>|B|$ (over for details), we have

20 pos. there.

$$
\begin{aligned}
& =\frac{1}{\pi}\left[\operatorname{Arctan}\left(\tan \left(\frac{\pi-\theta}{2}\right)\left(\frac{1+r}{1-r}\right)\right)-\operatorname{Arctan}\left(\tan \left(\frac{\theta}{2}\right)\left(\frac{1+r}{1-r}\right)\right)\right. \\
& \\
& \left.\quad-\operatorname{Arctan}\left(\tan \left(\frac{-\theta}{2}\right)\left(\frac{1+r}{1-r}\right)\right)+\operatorname{Arctan}\left(\tan \left(\frac{-\pi-\theta}{2}\right)\left(\frac{1+r}{1-r}\right)\right)\right] \\
& =\frac{2}{\pi} \operatorname{Arctan}\left(\cot \left(\frac{\theta}{2}\right)\left(\frac{1+r}{1-r}\right)\right) .
\end{aligned}
$$

(b) By the mean value property for harmonic functions,

5 pts.

$$
u(0 ; \theta)=\frac{1}{2 \pi} \int^{\pi} h(\varphi) d \varphi=\frac{1}{2 \pi}\left[\int^{0}-1 d \varphi+\int^{\pi} 1 d \varphi\right]=0 .
$$

A Brief Table of Fourier Transforms
$\mathrm{f}(\mathrm{x})$

$$
\hat{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \xi x} d x
$$

A. $\begin{cases}1 & \text { if }-\mathrm{b}<\mathrm{x}<\mathrm{b}, \\ 0 & \text { otherwise. }\end{cases}$
B. $\begin{cases}1 & \text { if } c<x<d, \\ 0 & \text { otherwise. }\end{cases}$
C. $\frac{1}{x^{2}+a^{2}} \quad(a>0)$
D. $\begin{cases}x & \text { if } 0<x \leq b, \\ 2 b-x & \text { if } b<x<2 b, \\ 0 & \text { otherwise. }\end{cases}$
E. $\begin{cases}e^{-a x} & \text { if } x>0, \\ 0 & \text { otherwise. }\end{cases}$
F. $\left\{\begin{array}{cl}e^{a x} & \text { if } b<x<c, \\ 0 & \text { otherwise } .\end{array}\right.$
G. $\begin{cases}e^{\text {iax }} & \text { if }-b<x<b, \\ 0 & \text { otherwise. }\end{cases}$
H. $\begin{cases}e^{\text {iax }} & \text { if } c<x<d, \\ 0 & \text { otherwise. }\end{cases}$
I. $e^{-a x^{2}} \quad(a>0)$
J. $\frac{\sin (a x)}{x} \quad(a>0)$

$$
\frac{1}{(a+i \xi) \sqrt{2 \pi}}
$$

$$
\frac{e^{(a-i \xi) c}-e^{(a-i \xi) b}}{(a-i \xi) \sqrt{2 \pi}}
$$

$\frac{e^{(a-i \xi) c}-e^{(a-i \xi) b}}{(a-i \xi) \sqrt{2 \pi}}$

$$
\sqrt{\frac{2}{\pi}} \frac{\sin (b(\xi-a))}{\xi-a}
$$

$\sqrt{\frac{2}{\pi}} \frac{\sin (b(\xi-a))}{\xi-a}$
$\frac{i}{\sqrt{2 \pi}} \frac{e^{i c(a-\xi)}-e^{i d(a-\xi)}}{a-\xi}$

$$
\frac{i}{\sqrt{2 \pi}} \frac{e^{i c(a-\xi)}-e^{i d(a-\xi)}}{a-\xi}
$$

$\frac{1}{\sqrt{2 a}} e^{-\xi^{2} /(4 a)}$

$$
\begin{aligned}
& \sqrt{\frac{2}{\pi}} \frac{\sin (b \xi)}{\xi} \\
& \frac{e^{-i c \xi}-e^{-i d \xi}}{i \xi \sqrt{2 \pi}} \\
& \frac{\sqrt{\frac{\pi}{2}} \frac{e^{-a|\xi|}}{a}}{{\frac{-1}{}+2 e^{-i b \xi}-e^{-2 i b \xi}}_{\xi^{2} \sqrt{2 \pi}}}
\end{aligned}
$$

$$
\frac{1}{\sqrt{2 a}} e^{-\xi^{2} /(4 a)}
$$

$$
\left\{\begin{aligned}
0 & \text { if }|\xi| \geq a \\
\sqrt{\pi / 2} & \text { if }|\xi|<a
\end{aligned}\right.
$$

Convergence Theorems

$$
\begin{equation*}
X^{\prime \prime}+\lambda X=0 \text { in }(a, b) \text { with any symmetric } \mathrm{BC} . \tag{1}
\end{equation*}
$$

Now let $f(x)$ be any function defined on $a \leq x \leq b$. Consider the Fourier series for the problem (1) with any given boundary conditions that are symmetric. We now state a convergence theorem for each of the three modes of convergence. They are partly proved in the next section.
Theorem 2. Uniform Convergence The Fourier series $\Sigma A_{n} X_{n}(x)$ converges to $f(x)$ uniformly on $[a, b]$ provided that
(i) $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ exist and are continuous for $a \leq x \leq b$ and
(ii) $f(x)$ satisfies the given boundary conditions.

Theorem 3. L^{2} Convergence The Fourier series converges to $f(x)$ in the mean-square sense in (a, b) provided only that $f(x)$ is any function for which

$$
\begin{equation*}
\int_{a}^{b}|f(x)|^{2} d x \text { is finite } \tag{8}
\end{equation*}
$$

Theorem 4. Pointwise Convergence of Classical Fourier Series

(i) The classical Fourier series (full or sine or cosine) converges to $f(x)$ pointwise on (a, b), provided that $f(x)$ is a continuous function on $a \leq x \leq b$ and $f^{\prime}(x)$ is piecewise continuous on $a \leq x \leq b$.
(ii) More generally, if $f(x)$ itself is only piecewise continuous on $a \leq x \leq b$ and $f^{\prime}(x)$ is also piecewise continuous on $a \leq x \leq b$, then the classical Fourier series converges at every point $x(-\infty<x<\infty)$. The sum is

$$
\begin{equation*}
\sum_{n} A_{n} X_{n}(x)=\frac{1}{2}[f(x+)+f(x-)] \quad \text { for all } a<x<b \tag{9}
\end{equation*}
$$

The sum is $\frac{1}{2}\left[f_{\text {ext }}(x+)+f_{\text {ext }}(x-)\right]$ for all $-\infty<x<\infty$, where $f_{\text {ext }}(x)$ is the extended function (periodic, odd periodic, or even periodic).

Theorem 4∞. If $f(x)$ is a function of period $2 l$ on the line for which $f(x)$ and $f^{\prime}(x)$ are piecewise continuous, then the classical full Fourier series converges to $\frac{1}{2}[f(x+)+f(x-)]$ for $-\infty<x<\infty$.

Math 325
Final Exam
Summer 2008

$$
\begin{array}{ll}
n: 20 \\
\mu: & 119.8 \\
\sigma: & 51.5
\end{array}
$$

Distribution of Scores:

$174-200$	2
$146-173$	6
$120-145$	3
$100-119$	3
$0-99$	6

Distribution of Letter Grades
A 2

B $\quad 7$
C 5
D 6
F $\quad 0$

