This final exam consists of seven problems of equal value. Please choose how much you want this exam to count by circling one of the following statements.

$$
\text { I want this exam to count } 200 \text { points. }
$$

$$
\text { I want this exam to count } 300 \text { points. }
$$

1. Classify the following partial differential equations as hyperbolic, parabolic, or elliptic, and if possible, find the general solution in the
$15 p_{1},-{ }^{x y-p l a n e}(a) u_{x x}-3 u_{x y}-4 u_{y y}=0 \quad B^{2}-4 A C=9-4(1)(-4)>0 \quad$ hyperbolic +1
ispts \cdots (b) $u_{x x}+u_{y y}+2 u_{x y}+3 b u=0 \quad B^{2}-4 A C=4-4(1)(1)=0 \quad$ parabolic +1

2

$$
\text { (a) }\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}-4 \frac{\partial}{\partial y}\right) u=0 \quad \text { Int } \quad \xi=4 x+y
$$

$$
\left(\xi \frac{\partial}{\partial \xi}\right)\left(\xi \frac{2}{\partial \eta}\right) u=0
$$

8

$$
\begin{aligned}
& \frac{\partial u}{\partial \eta}=c_{1}(\eta) \\
& u=\int c_{1}(\eta) d \eta+c_{2}(z)
\end{aligned}
$$

12

$$
\begin{aligned}
& u=f(\eta)+g(\xi) \\
& u=f(x-y)+g(4 x+y)
\end{aligned}
$$

where fad g are arbitring c^{2} functions of a single real varia
$=\quad(b) \quad\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)^{2} u+36 u=0$

6

$$
\text { Let } \begin{aligned}
\xi & =x-y \\
\eta & =x+y
\end{aligned}
$$

Than $\frac{\partial}{\partial x}=\frac{\partial \xi}{\partial x} \frac{\partial}{\partial z}+\frac{\partial y}{\partial x} \frac{\partial}{\partial \eta}=\frac{\partial}{\partial z}+\frac{\partial}{\partial \eta}$
and $\frac{2}{\partial y}=\frac{\partial z}{\partial y} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial y} \frac{\partial}{\partial \eta}=-\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}$.

$$
\therefore \quad \frac{\partial}{\partial x}+\frac{\partial}{\partial y}=2 \frac{\partial}{\partial \eta}
$$

$14 \quad u=f(x-y) \cos (3(x+y))+g(x-y) \sin (3(x+y))$
where f and g are arlatrany C^{2} function of a single real variable.
2. (a) Write, and simplify as much as possible, the solution to $u_{t t}=u_{x x}$ in the $x t-p l a n e$ which satisfies

$$
u(x, 0)=e^{-x^{2}} \text { and } u_{t}(x, 0)=-2 x e^{-x^{2}} \text { for }-\infty<x<\infty
$$

(b) Sketch profiles of the solution to part (a) for times $t=1$, $t=2$, and $t=3$.
(c) Derive a general (nontrivial) relation between ϕ and ψ which will produce a solution to $u_{t t}=u_{x x}$ in the $x t-p l a n e$ satisfying

$$
u(x, 0)=\phi(x) \text { and } u_{t}(x, 0)=\psi(x) \text { for }-\infty<x<\infty
$$

and such that u consists solely of a wave traveling to the left along the x-axis.

13 - axis.

4

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left[e^{-(x+t)^{2}}+e^{-(x-t)^{2}}\right]+\frac{1}{2} \int_{x-t}^{x+t}-2 \xi e^{-\xi^{2}} d \xi \\
& =\frac{1}{2}\left[e^{-(x+t)^{2}}+e^{-(x-t)^{2}}\right]+\left.\frac{1}{2}\left(e^{-\xi^{2}}\right)\right|_{\xi=x-t} ^{x+t}
\end{aligned}
$$

$$
=e^{-(x+t)^{2}}
$$

13
(c)

$$
\begin{aligned}
& u(x, t)=\frac{1}{2}[\varphi(x+t)+\varphi(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} \psi(\xi) d \xi \\
& =\frac{1}{2}\left[\varphi(x+t)+\int_{0}^{x+t} \psi(z) d \xi\right]+\underbrace{\frac{1}{2}}_{\text {He aud the to danish sic }}\left[\phi(x-t)+\int_{x-t}^{0} \psi(\xi) d \xi\right] \\
& \therefore \quad \phi(\xi)+\int_{\xi}^{0} \psi(\eta) d \eta=0 \text { for } d l-\infty<\xi<\infty . \\
& \Rightarrow \phi^{\prime}(\xi)=\psi(\xi) \text { ow all }-\infty<\xi<\infty .
\end{aligned}
$$

3. Find the solution to

$$
u_{t}-u_{x x}=0 \quad \text { for }-\infty<x<\infty, 0<t<\infty
$$

which satisfies

$$
u(x, 0)=x^{3} \quad \text { for }-\infty<x<\infty
$$

You may find the following identities useful:

$$
\int_{-\infty}^{\infty} e^{-p^{2}} d p=\sqrt{\pi}, \quad \int_{-\infty}^{\infty} p e^{-p^{2}} d p=0, \quad \int_{-\infty}^{\infty} p^{2} e^{-p^{2}} d p=\frac{\sqrt{\pi}}{2}, \quad \int_{-\infty}^{\infty} p^{3} e^{-p^{2}} d p=0
$$

6

18

$$
u(x, t)=\int_{-\infty}^{\infty} \frac{e^{-\frac{(x-y)^{2}}{4 t}}}{\sqrt{4 \pi t}} y^{3} d y=\int_{-\infty}^{\infty} \frac{e^{-p^{2}}}{\sqrt{\pi}}(x+p \sqrt{4 t})^{3} d p
$$

Let $p=(y-x) / \sqrt{4 t}$.
Then $d p=d y / \sqrt{4 t}$.

24

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \frac{e^{-p^{2}}}{\sqrt{\pi}}\left(x^{3}+3 x^{2} p \sqrt{4 t}+3 x(p \sqrt{4 t})^{2}+(p \sqrt{4 t})^{3}\right) d p \\
& =\frac{x^{3}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^{2}} d p+\frac{3 x \sqrt{4 t}}{\sqrt{\pi}} \int_{0}^{-p} p d p+\frac{12 x t}{\sqrt{\pi}} \int_{-\infty}^{-e^{2}} p^{2} d p+\frac{4 t \sqrt{4 t}}{\sqrt{\pi}} \int_{-\infty}^{\infty} p^{-\infty} d p
\end{aligned}
$$

$$
=3 x^{3}+6 x t
$$

Chede:

$$
\begin{aligned}
& u_{t}-u_{x x}=6 x-6 x=0 \\
& u(x, 0) \stackrel{\text { V}}{=} x^{3}
\end{aligned}
$$

4. (a) Let f and ψ be piecewise continuous, absolutely integrable functions on $(-\infty, \infty)$. Use Fourier transform methods to solve

$$
u_{x x}+u_{y y}=0 \text { for }-\infty<x<\infty, 0<y<\infty,
$$

subject to the boundary condition

$$
u(x, 0)=f(x) \text { for }-\infty<x<\infty
$$

and the decay conditions

$$
\lim u(x, y)=0 \text { for each } x \in(-\infty, \infty)
$$

$y \rightarrow \infty$
and, for each $y>0$,
$|u(x, y)| \equiv|\psi(x)|$ for all $-\infty<x<\infty$.
(b) Compute an explicit formula for the solution in part (a) if the function f is given by $f(x)=1$ for $|x|<1$, and $f(x)=0$ otherwise.
(a) $f\left(u_{x x}+u_{y y}\right)(x)=f(0)(3)$

$$
\therefore f(u)(z)=\frac{1}{\sqrt{3 \pi}} f\left(f_{*} \frac{\sqrt{z} y}{\sqrt{\pi}(\cdot)^{2}+y^{2}}\right)(3
$$

$$
\begin{aligned}
& \frac{\partial^{2} f(u)(3)+(i \xi)^{2} f(n)(\xi)=0}{\partial y^{2}} \\
& f(u)(3)=c_{1}(3) e^{3 y}+c_{2}(\xi) e^{-\xi y}
\end{aligned}
$$

If $5>0$ then $0=\lim _{y \rightarrow \infty} f(u)(\xi)$ so $c_{1}(\xi)=0$
By the tonier inversion theorem,

$$
\begin{aligned}
u(x, y) & =\frac{1}{\pi}\left(f * \frac{y}{(\cdot)^{2}+y^{2}}\right)(x) \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(s) y d s}{(x-s)^{2}+y^{2}}
\end{aligned}
$$

f $3<0$ then $0=\lim _{\substack{y \rightarrow \infty}} f^{\prime}(u)(3)$ so $c_{2}(z)=0$

$$
\begin{aligned}
& \therefore f(u)(3)= \begin{cases}e_{1}(3) e^{-3 y} & \text { if } \xi>0, \\
c_{1}(s) e^{i y} & \text { if } \xi<0,\end{cases} \\
& =c(3) e^{-(x) l y} \\
& f(f)(3)=\left.f(u)(x)\right|_{y=0}=\left.c(y) e^{-\mid(3) y}\right|_{y=0}=c(3) \\
& \therefore f(n)(3)=f(f)(\xi) e^{-13 / y}
\end{aligned}
$$

From Table of trier Transforms, atty C (with $a=y$) we have
(b)

$$
\begin{aligned}
n(x, y) & =\frac{1}{\pi} \int_{-1}^{1} \frac{y d s}{(x-s)^{2}+y^{2}} \\
\text { Let } z & =\frac{s-x}{y} . \text { Then } d z=\frac{d s}{y} \\
n(x, y) & =\frac{1}{\pi} \int_{-\frac{1-x}{y}}^{\frac{1-x}{y}} \frac{x^{7} d z}{x^{2}\left(z^{2}+1\right)} \\
& =\frac{1}{\pi}\left[\operatorname{Aratan}\left(\frac{1-x}{y}\right)-\operatorname{Ardan}\left(\frac{1}{1}\right.\right. \\
& =\frac{1}{\pi}\left[\operatorname{Anctan}\left(\frac{1+x}{y}\right)+\operatorname{Anctan}\left(\frac{1-1}{y}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& e^{-|z| y}=f\left(\sqrt{\frac{2}{\pi}} \cdot \frac{y}{(\cdot)^{2}+y^{2}}\right)(3) \\
\therefore & f(u \mid(z)=f(f)(x) f(\sqrt{z} \cdot y)(3)
\end{aligned}
$$

5. Solve $\nabla^{2} u=0$ in the unit cube $C: 0<x<1$, $0<y<1$, $0<z<1$, subject to the boundary conditions

$$
u(x, y, 0)=\sin (\pi x) \sin ^{3}(\pi y) \text { for } 0 \leq x \leq 1,0 \leq y \leq 1
$$

and $u=0$ on the other five faces of the cube C.

$$
\begin{aligned}
& u(x, y, z)=Z^{\prime}(x) F(y) Z(z), \quad{ }_{x x}+u_{y y}+u_{z z}=0 \Rightarrow \bar{X}^{\prime \prime}(x) \bar{Y}^{\prime}(y) Z(z)+Z^{\prime}(x) \mathbb{Y}^{\prime \prime}(y) Z(z)+\bar{Z}(x) \bar{Y}(y) Z^{\prime \prime}(z)=0 \\
& -\frac{\mathbb{Z}^{\prime \prime}(x)}{Z(x)}=\frac{\bar{Y}^{\prime \prime}(y)}{\bar{Y}(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}=\text { constant }=\lambda \Rightarrow \frac{\bar{Y}^{\prime \prime}(y)}{\bar{Y}(y)}=\frac{Z^{\prime \prime}(z)}{Z(z)}-\lambda=\text { constant }=\mu
\end{aligned}
$$

$$
\begin{aligned}
& \therefore X^{\prime \prime}(x)+\lambda \bar{X}(x)=0, \quad \bar{X}(0)=X(1)=0 \\
& \bar{Y}^{\prime \prime}(y)+\mu \bar{Y}(y)=0, \quad I(0)=I(1)=0
\end{aligned}
$$

10
if $\quad \lambda_{l}=(l \pi)^{2}$
${ }_{18} \quad \mu_{m}=(m \pi)^{2}$
Eigenfunction)

$$
\bar{X}_{l}(x)=\sin (l \pi x) \quad(l=1,2,3, \ldots)
$$

$$
F_{m}(y)=\sin (m \pi y) \quad(m=1,2,3, \ldots)
$$

Solution to the z-equation who $\lambda=\lambda_{l}$ and $\mu=\mu_{m}: \quad Z_{l, m}(z)=A \cosh \left(\pi z \sqrt{l^{2}+m^{2}}\right)+B \sinh \left(\pi z \sqrt{l^{2}+m^{2}}\right.$

$$
Z_{l, m}^{l, m}(1)=0 \Rightarrow Z_{l, m}(z)=\sinh \left(\pi(1-z) \sqrt{l^{2}+m^{2}}\right.
$$

(sp to a comentont malliple)

Formal adution to the hororgenems pact of the problem:

$$
u(x, y, z)=\sum_{l=1}^{\infty} \sum_{m=1}^{\infty} B_{l, m}^{0} \sin (l \pi x) \sin (m \pi y) \sinh \left(\pi(1-z) \sqrt{l^{2}+m^{2}}\right)
$$

We want to chooses the coefficients $B_{l, m}(l=1,2,3, \ldots, m=1,2,3, \ldots)$ no the nonhomogeneous) B.C. in met:

$$
24
$$

$$
\sin (\pi x) \sin ^{3}(\pi y)=u(x, y, 0)=\sum_{l=1}^{\infty} \sum_{m=1}^{\infty} B_{l m} \sin (l \pi x) \sin (m \pi y) \sinh \left(\pi \sqrt{l^{2}+m^{2}}\right) \quad\left(\begin{array}{l}
0 \leq x \leq 1 \\
0 \leq y \leq 1
\end{array}\right.
$$

$B u t \sin ^{3} \theta=\left(\frac{e^{i \theta}-e^{i \theta}}{2 i}\right)^{3}=\frac{e^{3 i \theta}-3 e^{2 i \theta} \cdot e^{i \theta}+3 e^{i \theta} \cdot e^{-2 i \theta}-e^{-3 i \theta}}{-8 i}=-\frac{1}{4}(\underbrace{\left.\frac{e^{3 i \theta}-e^{-3 i \theta}}{2 i}\right)}_{\sin (3 \theta)}+\frac{3}{4}(\underbrace{\left.\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right)}_{\sin (\theta)}$

$$
\therefore \quad \sin (\pi x) \sin ^{3}(\pi y)=\frac{3}{4} \sin (\pi x) \sin (\pi y)-\frac{1}{4} \sin (\pi x) \sin (3 \pi y)
$$

$28 \quad$ Choose $B_{1,1} \sinh (\pi \sqrt{2})=\frac{3}{4}, B_{1,3} \sinh (\pi \sqrt{10})=-\frac{1}{4}$, and all other $B_{l, m}=0$.
$30 \quad \therefore u(x, y, z)=\frac{3}{4 \sinh (\pi \sqrt{2})} \sin (\pi x) \sin (\pi y) \sinh (\pi(1-z) \sqrt{2})-\frac{1}{4 \sinh (\pi \sqrt{10})} \sin (\pi x) \sin (3 \pi y) \sinh (\pi(1-2) \sqrt{1}$

2\& 6. (a) Solve $\nabla_{u}=0$ in the unit disk $0 \leq r<1$ subject to the boundary condition $u(1 ; \theta)=1$ if $0<\theta<\pi$ and $u(1 ; \theta)=0$ if $-\pi<\theta<0$.
(b) What is the value of the solution to (a) at the center of the disk? Justify your answer.
.2 (a) Poison's Formula: $u(r ; \theta)=\frac{a^{2}-r^{2}}{2 \pi} \int_{-\pi}^{\pi} \frac{h(\varphi) d \rho}{a^{2}-2 \operatorname{arcos}(\theta-\rho)+r^{2}} \quad\binom{0 \leq r<a}{-\pi \leq \theta<\pi}$
In our ease, $a=1 \mathrm{and} \quad h(\theta)=\left\{\begin{array}{lll}1 & \text { if } 0<\theta<\pi, \\ 0 & \text { if }-\pi<\theta<0 .\end{array}\right.$

$$
\therefore u(r ; \theta)=\frac{1-r^{2}}{2 \pi} \int_{0}^{\pi} \frac{d \phi}{1-2 r \cos (\theta-\varphi)+r^{2}} \quad\binom{0 \leq r<1}{-\pi \leq \theta<\pi}
$$

Wing the integral formula $\int \frac{d \psi}{A+B \cos (\psi)}=\frac{2}{\sqrt{A^{2}-B^{2}}} \operatorname{Arctan}\left(\frac{\tan (\psi / 2) \sqrt{A^{2}-B^{2}}}{A+B}\right)$
(which can he derived using the weierstrass) substitution $z=\tan \left(\frac{4}{2}\right)$), we have

$$
\begin{aligned}
& u(r ; \theta)=\frac{1-r^{2}}{2 \pi} \int_{-\theta}^{\pi-\theta} \frac{d \psi}{1+r^{2}-2 r \cos (\psi)} \\
& \left.=\frac{1-r^{2}}{2 \pi} \cdot \frac{2}{\sqrt{\left(1-r^{2}\right)^{2}}} \operatorname{Arctan}\left[\frac{\tan (4 / 2) \sqrt{\left(1-r^{2}\right)^{2}}}{(1-r)^{2}}\right] \right\rvert\, \\
& \pi-\theta \\
& A+B=1+r^{2}-2 r=(1-r)^{2} \\
& A^{2}-B^{2}=\left(1+r^{2}\right)^{2}-4 r^{2} \\
& =1-2 r^{2}+r^{4} \\
& =\left(1-r^{2}\right)^{2} \\
& \psi=-\theta \\
& =\frac{1}{\pi}\left\{\operatorname{Arctan}\left[\frac{\tan \left(\frac{\pi-\theta}{2}\right)(1-r)(1+r)}{(1-r)^{r}}\right]-\operatorname{Arctan}\left[\frac{\tan (-\theta / 2)(1-r)(1+r)}{(1-r)^{2}}\right]\right\} \\
& =\frac{1}{\pi}\left\{\operatorname{Arctan}\left[\frac{\cot (\theta / 2)(1+r)}{1-r}\right]+\operatorname{Arctan}\left[\frac{\tan (\theta / 2)(1+r)}{1-r}\right]\right\}
\end{aligned}
$$

(b) By the mean-value property for harmonic functions,

$$
u(0 ; \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(1 ; \varphi) d \varphi=\frac{1}{2 \pi} \int_{0}^{\pi} 1 \cdot d \varphi=\frac{1}{2}
$$

Alternate solution to \#6.

12 (a) $n(r ; \theta)=\sum_{n=-\infty}^{\infty} \hat{h}(n) e^{i n \theta}\left(\frac{r}{a}\right)^{|n|}$
fr aur case, $a=1$ and $h(\theta)= \begin{cases}1 & \text { if } 0<\theta<\pi, \\ 0 & \text { if }-\pi<\theta<0 .\end{cases}$

18

$$
\begin{aligned}
& \hat{h}(n)=\frac{\left\langle h, e^{i n(t)}\right\rangle}{\left\langle e^{i(c)}, e^{i n(\cdot)}\right\rangle}=\frac{\int_{-\pi}^{\pi} h(\theta) e^{-i n \theta} d \theta}{\int_{-\pi}^{\pi}\left|e^{i n \theta}\right|^{2} d \theta}=\frac{1}{2 \pi} \int_{0}^{\pi} 1 \cdot e^{-i n \theta} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \hat{h}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(\theta) d \theta=\frac{1}{2 \pi} \int_{0}^{\pi} 1 d \theta=\frac{1}{2} \\
& u(r ; \theta)=\frac{1}{2}+\sum_{n=1}^{\infty} r^{n}\left[\hat{h}(n) e^{i n \theta}+\hat{h}(-n) e^{-i n \theta}\right] \\
& =\frac{1}{2}+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\left.r^{2 k-1} \sin (2 k-1) \theta\right)}{2 k-1}
\end{aligned}
$$

24
(b) $n(0 ; \theta)=\frac{1}{2}$

$$
\phi^{\prime}(0)=\phi^{\prime}(1)=0
$$

7. (a) Show that the Fourier cosine series of the function ϕ given on $9[0,1]$ by $\phi(x)=x^{2}(1-x)^{2}$ is

$$
\frac{1}{30}+\sum_{m=1}^{\infty} \frac{-3 \cos (2 m \pi x)}{(m \pi)^{4}}
$$

(b) Does the Fourier cosine series of ϕ converge to ϕ uniformly on

6 [0,1]? Justify your answer.
(c) Solve

$$
\begin{aligned}
& \varphi(x)=x^{2}-2 x^{3}+x^{4} \\
& \varphi^{\prime}(x)=2 x-6 x^{2}+4 x^{3} \\
& \varphi^{\prime \prime}(x)=2-12 x+12 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& u_{t t}=u_{x x} \text { for } 0<x<1,0<t<\infty, \varphi^{(4)}(x)=24 \\
& \text { nogeneous boundary/initial conditions }
\end{aligned}
$$

subject to the homogeneous boundary/initial conditions

$$
u_{x}(0, t)=0=u_{x}(1, t) \quad \text { and } \quad u_{t}(x, 0)=0 \quad \text { for } 0 \leq t, 0 \leq x \leq 1,
$$

and the nontemogeneous initial condition

$$
u(x, 0)=x^{2}(1-x)^{2} \quad \text { for } 0 \leq x \leq 1
$$

(d) Is your solution to (c) the only possible one? Give a complete justification of your answer.
(a)

$$
\begin{aligned}
& =\left.\frac{2}{(n \pi)^{3}}(24 x-12)\left(\frac{-\cos (n \pi x)}{n \pi}\right)\right|_{0} ^{1}+\frac{2}{(n \pi)^{4}} \int_{0}^{1} 24 \operatorname{tos}(n \pi x) d x=\frac{24}{(n \pi)^{4}}\left[(-1)^{n+1}-1\right]=\left\{\begin{array}{l}
\left.-\frac{48}{(n \pi)^{4}} \text { if } n=2 m\right) \\
0 \quad \text { if } n=2 m
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\frac{-3}{(m \pi)^{4}} & \text { if } x=2 m \text { is ewe, } \\
0 & \text { if } x=2 m+1 \text { is ode } .
\end{array}\right. \\
& a_{0}=\frac{\langle\varphi, 1\rangle}{\langle 1,1\rangle}=\int_{0}^{1} \varphi(x) d x=\frac{x^{3}}{3}-\frac{2 x^{4}}{4}+\left.\frac{x^{5}}{5}\right|_{0} ^{1}=\frac{1}{30}
\end{aligned}
$$

The fourier cosine series of o is

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)=\frac{1}{30}+\sum_{m=1}^{\infty} \frac{-3 \cos (2 m \pi x)}{(m \pi)^{4}}-
$$

(b) Since $\varphi, \varphi^{\prime}, \operatorname{ank} \varphi^{\prime \prime}$ are entivuand on $[0,1]$, and φ artifices the Newman B.C.'s that generate the orthogonal act $\{\cos (\pi n x)\}_{n=0}^{\infty}\left(\right.$ is. $\left.\phi^{\prime}(0)=\phi^{\prime}(1)=0\right)$, it follows that the fourier cosine series of φ converges uniformly to φ on $[0,1]$.
(c) $u(x, t)=\bar{X}(x) T(t) \Rightarrow \bar{X}^{\prime}(x) T^{\prime \prime}(t)=\bar{X}^{\prime \prime}(x) T(t) \Rightarrow-\frac{\bar{X}^{\prime \prime}(x)}{\bar{X}(x)}=-\frac{T^{\prime \prime}(t)}{T(t)}=$ cost. $=\lambda$

$$
\therefore \quad \bar{Z}^{\prime \prime}(x)+\lambda \bar{Z}(x)=0,{X^{\prime}(0)=Z^{\prime}(1)=0}^{T^{\prime \prime}(t)+\lambda T(t)=0, T^{\prime}(0)=0}\left\{\begin{array}{l}
u_{x}(0, t)=0 \Rightarrow Z^{\prime}(0) T(t)=0 \stackrel{Z^{\prime}}{\prime}(0)=0 \\
\text { similarly } u_{x}(1, t)=0 \Rightarrow Z^{\prime}(1)=0 \\
\text { and } u_{t}(x, 0)=0 \Rightarrow T^{\prime}(0)=0
\end{array}\right.
$$

Eignerahes: Eigenfunction

$$
\lambda_{n}=(n \pi)^{2} \quad Z_{n}(x)=\cos (n \pi x) \quad(n=0,1,2, \ldots)
$$

Solution to the t-problem corresponding to $\lambda=\lambda_{n}: \quad T_{n}(t)=\cos (n \pi t)$
$\therefore n(x, t)=\sum_{n=0}^{\infty} a_{n} \cos (n \pi x) \cos (n \pi t)$ is a formal solution to the homogeneous part of the problem. We want to choose the coefficients $a_{n}(n=0,1,2, \ldots)$ so the nonthomo generous I.C. is met:

$$
x^{2}(1-x)^{2}=u(x, 0)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \text { for } 0 \leq x \leq 1 \text {. }
$$

By just (a), $a_{0}=\frac{1}{30}$ and $a_{2 m}=\frac{-3}{(m \pi)^{4}}, a_{2 m-1}=0 \quad(m=1,2,3, \ldots)$.

$$
\therefore u(x, t)=\frac{1}{30}+\sum_{m=1}^{\infty} \frac{-3 \cos (2 m \pi x) \cos (2 m \pi t)}{(m \pi)^{4}} \text {. }
$$

(d) The solution in (c) is unique, for appose $u=u_{2}(x, t)$ is another solution. Then

$$
w(x, t)=\frac{1}{30}+\sum_{m=1}^{\infty} \frac{-3 \cos (2 m n x) \cos (2 m \pi t)}{(m \pi)^{4}}-u_{2}(x, t)
$$

solver

$$
\begin{array}{ll}
w_{t t}=w_{x x} & (0<x<1,0<t<\infty) \\
w_{x}(0, t)=0=w_{x}(1, t) & (0 \leq t<\infty), \\
w(x, 0)=0=w_{t}(x, 0) & (0 \leq x \leq 1) .
\end{array}
$$

Let $E(t)=\int_{0}^{1}\left[\frac{1}{2} w_{t}^{2}(x, t)+\frac{1}{2} w_{x}^{2}(x, t)\right] d x \quad(0 \leq t<\infty)$.
Then

$$
\begin{aligned}
E^{\prime}(t) & =\int_{0}^{1} \frac{\partial}{\partial t}\left[\frac{1}{2} w_{t}^{2}(x, t)+\frac{1}{2} w_{x}^{2}(x, t)\right] d x \\
& =\int_{0}^{1} w_{t}(x, t) w_{t t}(x, t) d x+\int_{0}^{1} w_{x}(x, t) w_{t x}(x, t) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{V}{w_{t}(x, t)} \overbrace{w_{x x}(x, t) d x}^{d V}+\int_{0}^{1} w_{x}(x, t) w_{t x}(x, t) d x \\
& =[w_{t}(1, t) \overbrace{w_{x}(1, t)}^{0}-w_{t}(0, t) \overbrace{w_{x}(0, t)}^{0}]-\int_{0}^{1} w_{x}(x, t) \int_{t x}(x, t) d x+\int_{0}^{1} w_{x}(x, t) w_{t x}(x, t) d x \\
& =0
\end{aligned}
$$

so $E(t)=$ constant on $[0, \infty)$. But $w(x, 0)=0$ for ale $0 \leq x \leq 1$ implies $w_{x}(x, 0)=0$.

$$
\therefore \quad E(0)=\int_{0}^{1}\left[\frac{1}{2} w_{t}^{2}(x, 0)+\frac{1}{2} w_{x}^{2}(x, 0)\right] d x=0
$$

so $E(t)=0$ for all $0 \leq t<\infty$. But the integrand of E is continuous) and nonnegative so $\frac{1}{2} w_{t}^{2}(x, t)+\frac{1}{2} w_{x}^{2}(x, t)=0$ for all $0 \leq x \leq 1$ and all $0 \leq t<\infty$.
Consequently $w_{t}(x, t)=w_{x}(x, t)=0$ as $w(x, t)=$ comentant on $0 \leq x \leq 1,0 \leq t<\infty$. However the I.C. $W(x, 0)=0(0 \leq x \leq 1)$ implies $w(x, t)=0$ on $0 \leq x \leq 1,0 \leq t<\infty$, is.

$$
u_{2}(x, t)=\frac{1}{30}+\sum_{m=1}^{\infty} \frac{-3 \cos (2 m \pi x) \cos (2 \pi m t)}{(m \pi)^{4}}
$$

for all $0 \leq x \leq 1$ and $0 \leq t<\infty$.

$$
\begin{aligned}
\varphi(x)=x^{2}-2 x^{3}+x^{4} \\
\begin{aligned}
\int_{0}^{1} x^{2} \cos (n \pi x) d x & =\left.\frac{x^{2} \min (\operatorname{m\pi x})}{n \pi}\right|_{0} ^{1}-\frac{2}{n \pi} \int_{0}^{1} x \frac{\sin (n \pi x)}{n \pi} d x \\
& =-\frac{2}{n \pi}\left[-\left.x \frac{\cos (n \pi x)}{n \pi}\right|_{0} ^{1}+\int_{0}^{1} \frac{\operatorname{cog}\left(\frac{2 \pi x}{n \pi}\right.}{n \pi} d x\right] \\
& =\frac{2}{(n \pi)^{2}}\left[\frac{(-1)^{n}}{\operatorname{con}(n \pi)}\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{1} x^{3} \cos (n \pi x) d x & =\left.\frac{x^{3} \sin (n \pi x)}{n \pi}\right|_{0} ^{0}-\frac{3}{n \pi} \int_{0}^{1} \frac{x^{2} \sin (n \pi x)}{n} d x \\
& =\frac{-3}{n \pi}\left[-\left.\frac{x^{2} \cos (n \pi x)}{n \pi}\right|_{0} ^{1}+\frac{2}{n \pi} \int_{0}^{1} \frac{x \cos (n \pi x)}{n \pi} d x\right] \\
& =\frac{3}{(n \pi)^{2}}\left[\frac{(-1)^{n}}{\operatorname{con}(n \pi)}\right]-\frac{6}{(n \pi)^{2}} \int_{0}^{1} x \cos (n \pi x) d x \\
& =\frac{3(-1)^{n}}{(n \pi)^{2}}-\frac{6}{(n \pi)^{2}}\left[\left.\frac{x \sin (x) \pi x}{n \pi}\right|_{0} ^{0}-\int_{0}^{1} \frac{\sin (n \pi x)}{n \pi} d x\right] \\
& =\frac{3(-1)^{n}}{(n \pi)^{2}}+\left.\frac{6}{(n \pi)^{3}}\left(\frac{-\cos (n \pi x)}{n \pi}\right)\right|_{0} ^{1} \\
& =\frac{3(-1)^{n}}{(n \pi)^{2}}+\frac{6}{(n \pi)^{4}}\left[1-(-1)^{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} x^{4} \cos (n \pi x) d x=\left.\frac{x^{4} \sin (\pi n \pi x)}{n \pi}\right|_{0} ^{0}-\frac{4}{n \pi} \int_{0}^{1} \frac{x^{3}}{n} \frac{\sin (n \pi x)}{n} d x \\
& =-\frac{4}{n \pi}\left[\left.\frac{-x^{3} \cos (n \pi x)}{n \pi}\right|_{0} ^{1}+\int_{0}^{1} 3 x^{2} \frac{\cos (n \pi x)}{n \pi} d x\right] \\
& =\frac{4(-1)^{n}}{(n \pi)^{2}}-\frac{12}{(n \pi)^{2}} \int_{0}^{1} x^{2} \operatorname{con}(n \pi x) d x \\
& =\frac{4(-1)^{n}}{(n \pi)^{2}}-\frac{12}{(n \pi)^{2}}\left[\frac{2(-1)^{n}}{(n \pi)^{2}}\right] \\
& =\frac{4(-1)^{n}}{(n \pi)^{2}}-\frac{24(-1)^{n}}{(n \pi)^{4}} \\
& \therefore \quad a_{n} \frac{\omega^{n}}{=} 2 \int_{0}^{1} \varphi(x) \cos (n \pi x) d x \\
& =2 \int_{0}^{1} x^{2} \cos (n \pi x) d x-4 \int_{0}^{1} x^{3} \cos (n \pi x) d x+2 \int_{0}^{1} x^{4} \cos (n \pi x) d x \\
& =\frac{4(-1)^{n}}{(n \pi)^{2}}-4\left[\frac{3(-1)^{n}}{(n \pi)^{2}}+\frac{6}{(n \pi)^{4}}\left[1-(-1)^{n}\right]\right]+2\left[\frac{4(-1)^{n}}{(n \pi)^{2}}-\frac{24(-1)^{n}}{(n \pi)^{4}}\right] \\
& =\frac{4(-1)^{n}-12(-1)^{n}+8(-1)^{n}}{(n \pi)^{2}}+\frac{-24\left(1-(-1)^{n}\right)-4 B(-1)^{n}}{(n \pi)^{4}} \\
& =\frac{24\left(-1-(-1)^{n}\right)}{(n \pi)^{4}} \\
& =\left\{\begin{array}{ccc}
\frac{-48}{(n \pi)^{4}} & \text { if } n=2 m \text { in even, } \\
0 & \text { if } n=2 m-1 \text { is odd. }
\end{array}\right.
\end{aligned}
$$

Final Exam (2000 Summer)

$$
\begin{aligned}
& \mu=127.1 \\
& \sigma=49.0
\end{aligned}
$$

Distribution of Scores

$174-$	A	$4(1111)$
$146-173$	B	$1(1)$
$120-145$	C	$3(111)$
$100-119$	D	$4(1111)$
$0-99$	F	$4(1111)$

