Mathematics 315

Final Exam, Part II Spring 2007 Name: Dr.Grow (1 pt.)

This portion of the 200-point final examination is open book/notes. You are to solve three problems of your choosing, subject to the constraint that at least one problem must be chosen from Group 1 and at least one problem must be chosen from Group 2.

Group 1.

1.(36 pts.) Let $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, ... denote the (infinite) sequence of prime numbers, let $\pi(x)$ denote the number of primes less than or equal to x, and let $f(x) = \frac{1}{x}$ for x > 0.

- (a) Show that $\int_{1}^{x} f(t)d(\pi(t)) = \sum_{p_k \le x} \frac{1}{p_k}$ for x > 2. (b) Show that $\int_{1}^{x} f(t)d(\pi(t)) = \frac{\pi(x)}{x} + \int_{1}^{x} \frac{\pi(t)}{t^2} dt$ for x > 2.
- (c) Use (a) and (b) to verify that

$$\sum_{p_k \le x} \frac{1}{p_k} = \ln\left(\ln\left(x\right)\right) + \int_{e}^{x} \left(\pi(t) - \frac{t}{\ln(t)}\right) \frac{dt}{t^2} + \int_{1}^{e} \frac{\pi(t)}{t^2} dt + \frac{\pi(x)}{x} \quad \text{for } x > 2$$

Assume that to each a > 0 there correspond real constants B = B(a) > 1 and C = C(a) > 0 such that

(*)
$$\left| \pi(x) - \frac{x}{\ln(x)} \right| \le C x e^{-a \sqrt{\ln(x)}} \quad \text{for } x \ge B.$$

(d) Use (*) to help show that
$$\lim_{y>x\to\infty} \left| \int_{x}^{y} \left(\pi(t) - \frac{t}{\ln(t)} \right) \frac{dt}{t^2} \right| = 0.$$

(e) Why does the improper Riemann integral $\int_{e}^{\infty} \left(\pi(t) - \frac{t}{\ln(t)} \right) \frac{dt}{t^2}$ converge?

(f) Use (c) and (*) to help show that

$$\lim_{x\to\infty}\left(\sum_{p_k\leq x}\frac{1}{p_k}-\ln\left(\ln(x)\right)\right)=\int_e^{\infty}\left(\pi(t)-\frac{t}{\ln(t)}\right)\frac{dt}{t^2}+\int_1^e\frac{\pi(t)}{t^2}dt.$$

2.(36 pts.) Let F be a continuous real function on the unit cube $\mathbf{Q} = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$

in \mathbb{R}^3 . Show that to each $\varepsilon > 0$ there corresponds a positive integer N and a finite collection $f_1, g_1, h_1, \dots, f_N, g_N, h_N$ of real polynomials on the unit interval [0,1] such that

$$\left|F(x, y, z) - \sum_{k=1}^{N} f_k(x)g_k(y)h_k(z)\right| < \varepsilon$$

for all (x, y, z) in **Q**.

3.(36 pts.) Consider the 2π - periodic function f determined by $f(x) = \frac{\pi - x}{2}$ if $-\pi \le x < \pi$.

(a) Compute the Fourier series of f with respect to the orthogonal set of functions $\{e^{inx}\}_{n=-\infty}^{\infty}$ on the interval $[-\pi,\pi]$.

(b) For each x in the interval $[-\pi,\pi]$, discuss the pointwise convergence (or lack thereof) of the Fourier series of f at x to f(x).

(c) Discuss the uniform convergence (or lack thereof) of the Fourier series of f to the function f on $[-\pi,\pi]$.

(d) Discuss the L^2 – convergence (or lack thereof) of the Fourier series of f to the function f on $[-\pi,\pi]$.

(e) Use the preceding to help compute the sums of $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$ and $\sum_{k=1}^{\infty} \frac{1}{k^2}$.

Group 2.

4.(36 pts.) Let $\langle a_n \rangle_{n=1}^{\infty}$ be a positive divergent sequence, and for every positive integer n let

$$f_n(x) = \begin{cases} a_n & \text{if } x \in \left(\frac{1}{n+1}, \frac{1}{n}\right), \\ 0 & \text{otherwise in } (0,1). \end{cases}$$

(a) If $\left\langle \frac{a_n}{n^2} \right\rangle_{n=1}^{\infty}$ is a bounded sequence, show that $\left\langle \int_{0}^{1} f_n dx \right\rangle_{n=1}^{\infty}$ is a bounded sequence.

(b) Place an X in each blank below that would imply

$$\lim_{n\to\infty}\int_0^1 f_n dx = \int_0^1 \lim_{n\to\infty} f_n dx$$

and an O in each blank otherwise. Supply reasons for your answers.

(i) _____
$$\left\langle \frac{a_n}{\ln(n)} \right\rangle_{n=2}^{\infty}$$
 is a bounded sequence.
(ii) _____ $\lim_{n \to \infty} \frac{a_n}{n^3 \ln\left(1 + \frac{1}{\sqrt{n}}\right)} = 0.$
(iii) _____ $\lim_{n \to \infty} \frac{a_n}{n^2} = 0.$
(iv) _____ $\left\langle \frac{a_n}{n^2 \ln(n)} \right\rangle_{n=2}^{\infty}$ is a bounded sequence.

5.(36 pts.) In this problem you may assume that the Riemann-Lebesgue Lemma holds for functions in $L^{1}(-\pi,\pi)$: If $f \in L^{1}(-\pi,\pi)$ then $\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = 0 = \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$.

Let $\langle n_k \rangle_{k=1}^{\infty}$ be an increasing sequence of positive integers, let *E* be the set of all *x* in $(-\pi, \pi)$ for which $\langle \sin(n_k x) \rangle_{k=1}^{\infty}$ is a convergent sequence, and let *A* be any measurable subset of *E*.

15

- (a) Show that $\lim_{k\to\infty} \int_A \sin(n_k x) dx = 0.$
- (b) Show that $\lim_{k\to\infty} 2\int_A \left(\sin(n_k x)\right)^2 dx = \lim_{k\to\infty} \int_A \left(1 \cos(2n_k x)\right) dx = m(A).$
- (c) Use (a) and (b) to help show that m(E) = 0.

6.(36 pts.) Let f be a bounded measurable function on [0,1] and define

$$F(x) = \int_{0}^{x} f(t)dt$$
 for x in [0,1].

(a) Show that F is continuous on [0,1].

(b) Show that F is of bounded variation on [0,1].

Assume that Lebesgue's theorem for differentiation of monotone functions holds: If g is increasing on (a,b) then g'(x) exists a.e. in (a,b).

(c) Why does F'(x) exist a.e. in (0,1)?

(d) Use (c) to help show that $\int_{0}^{y} \{F'(t) - f(t)\} dt = 0 \text{ for all } y \text{ in } [0,1].$

(e) Use (c) and (d) to help show that F'(x) = f(x) a.e. in [0,1].

$$\frac{41}{41} = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \ge 0, \end{cases} \text{ denote the Heaviside unit step function}, \\ \text{Then } \pi(t) = \sum_{k=1}^{\infty} H(t - p_{k}) & \text{for } t > 0, \\ P_{k} \le t \end{cases} \text{ for } t > 0, \text{ since } f(t) = \frac{1}{t} & \text{is continuous on} \\ P_{k} \le t \\ (0, \infty), & \text{Theorem 6.16 in Rudin implies that} \end{cases}$$

$$\int_{1}^{\infty} f(t) d(\pi(t)) = \sum_{k=1}^{\infty} f(p_{k}) = \sum_{k=1}^{\infty} \frac{1}{p_{k}} & \text{for } x > 0. \\ P_{k} \le x \end{cases}$$

 $\int_{1}^{\infty} f(t) = f(x)\pi(x) - f(x)\pi(t) - \int_{1}^{\infty} \pi(t) d(f(t)) = \frac{\pi(x)}{x} + \int_{1}^{\infty} \frac{\pi(t)}{t^2} dt \qquad \text{for } x > 0.$

 $(f) \qquad \sum_{\substack{k \leq x \\ p_k \leq x}} \frac{1}{p_k} = \int_{1}^{x} f(t)d(\pi(t)) = \frac{\pi(x)}{x} + \int_{1}^{x} \frac{\pi(t)}{t^2} dt \qquad for \quad x > 0.$

For x > 1, we have

$$(#) \int_{1}^{x} \frac{\pi(t)}{t^{2}} dt = \int_{1}^{e} \frac{\pi(t)}{t^{2}} dt + \int_{e}^{x} (\pi(t) - \frac{t}{\ln(t)}) \frac{dt}{t^{2}} + \int_{e}^{x} \frac{dt}{t\ln(t)} \begin{cases} \text{Let} \\ u = \ln(t) \\ \text{Then} \end{cases}$$

$$= \int_{1}^{e} \frac{\pi(t)}{t^{2}} dt + \int_{e}^{x} (\pi(t) - \frac{t}{\ln(t)}) \frac{dt}{t^{2}} + \int_{1}^{u} \frac{dn(x)}{u}$$

$$= \int_{1}^{e} \frac{\pi(t)}{t^2} dt + \int_{e}^{\infty} \left(\pi(t) - \frac{t}{\ln(t)} \right) \frac{dt}{t^2} + \ln\left(\ln(x)\right),$$

Substituting from (ff) into (f) yields the desired identity for
$$x > 1$$
:

$$\sum_{k=1}^{\infty} \frac{1}{P_{k}} = lu(ln(x)) + \int_{e}^{\infty} (\pi(t) - \frac{t}{h_{e}}) \frac{dt}{t^{2}} + \int_{e}^{\infty} \frac{\pi(t)}{t^{2}} dt + \frac{\pi(x)}{x}$$

$$P_{k} \leq x$$

(*) holds. For all y > x ≥ B we have

Since $te^{-at} \rightarrow 0$ and $e^{-at} \rightarrow 0$ as $t \rightarrow \infty$, it follows from the above estimate that $\lim_{y \to \infty} \left| \int_{x}^{y} (\pi(t) - \frac{t}{m(t)}) \frac{dt}{t^2} \right| = 0$.

(e) Let
$$\langle x_n \rangle_{n=1}^{\infty}$$
 be any sequence of real numbers that tends to ∞
with n. Then part (d) shows that the sequence of numbers
 $\langle \int_{e}^{x_n} (\pi(t) - \frac{t}{n(t)}) \frac{dt}{t^2} \rangle_{n=1}^{\infty}$ is Cauchy, and hence is convergent.
It follows that the improper Riemann integral
 $\int_{e}^{\infty} (\pi(t) - \frac{t}{n(t)}) \frac{dt}{t^2} = \lim_{x \to \infty} \int_{e}^{x} (\pi(t) - \frac{t}{n(t)}) \frac{dt}{t^2}$
is convergent.

15 convergent.

 $\begin{aligned} & (f) \quad \text{From (it)} \quad \text{we see that} \\ & \left| \frac{\pi(x)}{x} \right| \, \leq \, \left| \frac{\pi(x)}{x} - \frac{1}{\ln(x)} \right| + \left| \frac{1}{\ln(x)} \right| \\ & \leq \, Ce^{-\alpha \sqrt{\ln(x)}} + \frac{1}{\ln(x)} \longrightarrow 0 \quad \text{as } x \to \infty \,. \end{aligned}$

Therefore, (c) and (e) imply that

$$\lim_{x \to \infty} \left(\sum_{\substack{l \leq x \\ Pk \leq x}} \frac{1}{Pk} - \ln(\ln(x)) \right) = \lim_{x \to \infty} \left(\int_{e}^{\infty} \left(\frac{\pi(t)}{\ln(t)} - \frac{t}{t^{2}} \right) \frac{dt}{t^{2}} + \int_{1}^{e} \frac{\pi(t)}{t^{2}} dt + \frac{\pi(x)}{x} \right)$$
$$= \int_{e}^{\infty} \left(\frac{\pi(t)}{\ln(t)} - \frac{t}{t^{2}} \right) \frac{dt}{t^{2}} + \int_{1}^{e} \frac{\pi(t)}{t^{2}} dt .$$

#2. Let Q be the family of all functions
$$\varphi$$
 on Q of the form

$$(*) \quad \varphi(x,y,z) = \sum_{k=1}^{N} f_{k}(x)g_{k}(y)h_{k}(z)$$

$$k = 1$$

where N is some positive integer and $f_{1}, g_{1}, h_{1}, \dots, f_{N}, g_{N}, h_{N}$ is a (finite) collection of real polynomials on the unit interval [0,1]. Clearly Q is an algebra of real continuous functions on the compact metric space Q. Since $l \in Q$, the algebra Q vanishes at no point of Q. Also, if (x_{1}, y_{1}, z_{1}) and (x_{2}, y_{2}, z_{2}) are two distinct points of Q, then the function

$$\varphi(x,y,z) = (x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2$$

belongs to Q and satisfies $\varphi(x_1, y_1, z_1) = 0 \neq \varphi(x_2, y_2, z_2)$. Thus Q separates points on Q. The Stone-Weierstrass Theorem (7.32 in Rudin) then implies that Q is uniformly dense in C(Q). That is, to each continuous real function F on Q and each z_{70} , there corresponds a function φ of the form (*) in Q such that

$$\left| F(x,y,z) - \varphi(x,y,z) \right| < \varepsilon$$

for all (x, y, z) in Q.

$$\frac{\#3.}{-\pi} (a) \quad \hat{f}(o) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\pi - x}{2} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\pi}{2} dx = \frac{\pi}{2}.$$

$$\begin{aligned}
If n \neq 0 & \text{then} \\
\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\frac{\pi - x}{2}) cos(nx) dx - \frac{i}{2\pi} \int_{-\pi}^{\pi} (\frac{\pi - x}{2}) sin(nx) dx \\
&-\pi & -\pi & -\pi & -\pi \\
&= \frac{1}{2\pi} (\frac{\pi}{2}) \int_{-\pi}^{\pi} cos(nx) dx - \frac{1}{4\pi} \int_{-\pi}^{\pi} cos(nx) dx - \frac{i}{2\pi} (\frac{\pi}{2}) \int_{-\pi}^{\pi} sin(nx) dx + \frac{i}{4\pi} \int_{-\pi}^{\pi} even \\
&= \frac{i}{2\pi} \int_{0}^{\pi} \frac{x sin(nx) dx}{dx} = \frac{i}{2\pi} \left[-\frac{x cos(nx)}{n} \int_{0}^{\pi} - \int_{-\pi}^{\pi} \frac{x cos(nx)}{n} dx \right] = -\frac{i cos(n\pi)}{2n} = \frac{i (-1)^{n+1}}{2n}
\end{aligned}$$

Therefore the Fourier series of f is

7 00.

$$\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{inx} = \frac{\pi}{2} + \frac{i}{2} \sum_{n=1}^{\infty} \left(\frac{(-i)}{n} e^{inx} + \frac{(-i)}{-n} e^{-inx} \right)$$
$$= \frac{\pi}{2} + \frac{i}{2} \sum_{n=1}^{\infty} \frac{(-i)}{n} \left(\frac{inx}{e} - e^{inx} \right)$$
$$= \frac{\pi}{2} + \frac{i}{2} \sum_{n=1}^{\infty} \frac{(-i)}{n} \left(\frac{inx}{e} - e^{inx} \right)$$
$$= \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{(-i)}{n} \sin(nx)$$

(b) Since f is 217-periodic and of bounded variation on $[-\pi,\pi]$, the Dirichlet-Jordan theorem (Rudin, p. 200, #17) implies $\lim_{N \to \infty} S_{N}(f;x) = \frac{1}{2} [f(x^{+}) + f(x^{-})]$

for all x in R. Since f is continuous if $-\pi < x < \pi$ and satisfies $f(\pi^+) = f(-\pi^+) = \pi$, $f(-\pi^-) = f(\pi^-) = 0$, it follows that

$$\frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{(-i)\sin(nx)}{n} = \begin{cases} \frac{\pi}{2} & \text{if } x = -\pi, \\ \frac{\pi}{2} & \text{if } -\pi < x < \pi, \\ \frac{\pi}{2} & \text{if } x = \pi. \end{cases}$$

In particular, the Fourier series of f converges to f(x) for all $-\pi < x < \pi$, but the Fourier series of does not converge to $f(-\pi)$ nor $f(\pi)$ at the endpoints $x = \pm \pi$.

(c) Since the Fourier series of f does not converge pointwise to f on $[-\pi,\pi]$, it follows that the Fourier series of f does not converge uniformly to f on $[-\pi,\pi]$.

(d) Since f is
$$2\pi$$
-periodic and Riemann integrable on $[-\pi,\pi]$, the Fourier
Series of f converges in the L²-sense to f on $[-\pi,\pi]$ (see Rudin, Theorem 8.16)

$$\begin{aligned} \begin{array}{l} (e) \quad By \quad part (c) , \\ \overline{A} &= f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{(-1)\sin(n\pi/2)}{n} \\ But \quad \sin\left(n\frac{\pi}{2}\right) &= \begin{cases} o \quad \text{if } n = 2k \text{ is even} , \\ (-1)^k \quad \text{if } n = 2k+1 \quad \text{is } odd , \end{cases} \\ \begin{array}{l} (-1)^k \quad \text{if } n = 2k+1 \quad \text{is } odd , \end{cases} \\ \end{array} \\ \begin{array}{l} \overline{A} &= \frac{\pi}{2} + \sum_{k=0}^{\infty} \frac{(-1)^k \cdot (-1)^k}{2k+1} = \frac{\pi}{2} - \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \\ and \quad hence \end{array} \\ \begin{array}{l} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4} \\ k = o \quad 2k+1 \quad = \frac{\pi}{4} \end{cases} \\ \end{array} \\ \end{array} \end{aligned}$$

By Parseval's Theorem (Rudin, Theorem 8.16),

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(x)|^{2}dx = \sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2}.$$

7pts,

7 pts

795

Therefore

.

•

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{\pi - x}{2}\right)^{2} dx = \left|\frac{\pi}{2}\right|^{2} + \sum_{n=1}^{\infty} \left(\left|\frac{i(e_{1})^{n+1}}{2n}\right|^{2} + \left|\frac{i(e_{1})^{n+1}}{2(e_{1})}\right|^{2}\right)$$

$$\Rightarrow \frac{\pi^{2}}{3} = \frac{\pi^{2}}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

$$\Rightarrow \frac{\pi^{2}}{5} = \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

$$\Rightarrow \frac{\pi^{2}}{5} = \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

$$\frac{\# 4}{n!} (a)^{n-1} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{j} - \frac{a_{j}}{n!}) \leq \frac{a_{j}}{n!} \leq M \quad \text{for some veal number M and all}$$
integers $n \geq 1$. Then
$$D \leq \int_{0}^{1} f_{n} dx = \int_{n+1}^{n} a_{n} dx = a_{n} \left(\frac{1}{n} - \frac{1}{n!}\right) = \frac{a_{n}}{n!(n+1)} \leq \frac{a_{n}}{n!} \leq M$$
for all $n \geq 1$ so $\langle \int_{0}^{1} f_{n} dx \rangle_{n=r}^{\infty}$ is a bounded sequence.
$$(\frac{1}{2}) \quad \text{Clearly lim} f_{n}(r) = 0 \quad \text{for each } x \text{ in } (0, r) \text{ so } \int_{0}^{1} \lim_{n \neq \infty} f_{n} dx = \int_{0}^{1} (dx = 0)$$
Note also that the computation in part (a) shows that $\int_{0}^{1} f_{n} dx = \frac{a_{n}}{n!(n+1)} \text{ for all } n \geq 1$. Therefore $\lim_{n \to \infty} \int_{0}^{1} f_{n} dx = \int_{0}^{1} (\lim_{n \to \infty} f_{n}) dx$ if and only if $\lim_{n \to \infty} \frac{a_{n}}{n!(n+1)} = 0$
for all $n \geq 1$. Therefore $\lim_{n \to \infty} \int_{0}^{1} f_{n} dx = \int_{0}^{1} (\lim_{n \to \infty} f_{n}) dx$ if and only if $\lim_{n \to \infty} \frac{a_{n}}{n!(n+1)} = 0$
for all $n \geq 2$. Then
 $0 \leq \frac{a_{n}}{n!(n+1)} = \frac{a_{n}}{b_{n}(r)} \cdot \frac{b_{n}(n)}{n!(n+1)} \leq \frac{M b_{n}(n)}{n!(n+1)} \to 0$ as $n \to \infty$,
so the " X'' " in the black is judified.

Suppose that for $n \geq 1$ and note that
 $0 \leq \frac{a_{n}}{n!(n+1)} = \frac{1}{n!b_{n}(1+\frac{1}{\sqrt{n}})} \leq \frac{1}{\sqrt{n}}$ for all $n \geq 1$. Therefore $\lim_{n \to \infty} \frac{b_{n}(1+\frac{1}{\sqrt{n}})}{n!(n+1)} = \frac{1}{\sqrt{n}} \int_{0}^{1} f_{n} dx = \frac{1}{\sqrt{n}$

.

However $\frac{a_n}{n(n+i)} = \frac{n}{n+i} \rightarrow 1$ as $n \rightarrow \infty$, so the "O" in the blank is justified.

$$7 \text{pts}(iii) \quad \text{Suppose } \lim_{n \to \infty} \frac{a_n}{n^2} = 0. \text{ Then}$$

$$(245) \quad 0 \leq \frac{a_n}{n(n+1)} \leq \frac{a_n}{n^2} \rightarrow 0 \text{ as } n \rightarrow \infty$$

$$\text{so the "} X" \text{ in the blank is justified.}$$

$$7 \text{ pts}(iv) \quad \text{We may take } a_n = n^2 \ln(n) \text{ for } n \geq 1 \text{ and note that}$$

$$(2+5) \quad \frac{a_n}{n^2 \ln(n)} = 1 \quad \text{is bounded } and \quad \frac{a_n}{n(n+1)} = \frac{n \ln(n)}{n+1} \rightarrow \infty$$

as $n \rightarrow \infty$. Therefore the "O" in the blank is justified.

$$\frac{\#5}{\pi} [f(x)] dx = \int_{-\pi}^{\pi} \chi_{A}(x) dx = m(A) < \infty \text{ so } f \in L'(-\pi,\pi). \text{ By the}$$

$$\int_{-\pi}^{\pi} [f(x)] dx = \int_{-\pi}^{\pi} \chi_{A}(x) dx = m(A) < \infty \text{ so } f \in L'(-\pi,\pi). \text{ By the}$$
Riemann-Lebesgue Lemma,
$$0 = \lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \sin(n_{k}x) dx = \lim_{k \to \infty} \int_{A} \sin(n_{k}x) dx .$$

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \sin(n_{k}x) dx = \lim_{k \to \infty} \int_{A} \sin(n_{k}x) dx .$$

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} \chi_{A}(x) \cos(2n_{k}x) dx = \lim_{k \to \infty} \int_{A} \cos(2n_{k}x) dx .$$

$$k \rightarrow \infty \int A$$
 $k \rightarrow \infty \int A$

Using the identity
$$2\sin^2(\theta) = 1 - \cos(2\theta)$$
 and (\dagger) , we have

.

$$\lim_{k \to \infty} 2 \int \left[\sin(n_k x) \right]^2 dx = \lim_{k \to \infty} \int \left[1 - \cos(2n_k x) \right] dx = \int 1 dx - \lim_{k \to \infty} \int \cos(2n_k x) dx = m(A).$$

Notion (C) The assumptions of this problem imply that
$$f(x) = \lim_{k \to \infty} \sin(n_k x)$$
 exists
for all x in E. Let $E^+ = \{x \in E : f(x) \ge 0\}$ and $E^- = E \setminus E^+$. Then E^+ and
 E^- are measurable subsets of the measurable set $E \subseteq (-\pi, \pi)$ with
 $E^+ \cap E^- = \emptyset$ and $E^+ \cup E^- = E$. By part (b) and the Dominated Convergence
Theorem,

$$(\texttt{*}) \quad \frac{1}{2}m(E^{+}) = \lim_{k \to \infty} \int_{E^{+}} [\sin(n_{k}x)] dx = \int_{E^{+}} \lim_{k \to \infty} [\sin(n_{k}x)] dx = \int_{E^{+}} f^{2}(x) dx .$$

$$E^{+} \qquad E^{+} \qquad E^{+}$$
But $f: E \to [-1, 1]$ so $f^{2}(x) \leq |f(x)|$ on E . Also $|f(x)| = f(x)$ on $E^{+}_{,}$ so

$$\begin{array}{ll} (**) & \int f^2(x) dx \leq \int f(x) dx \\ & E^+ & E^+ \end{array}$$

On the other hand, the Dominated Convergence Theorem and part (a) imply $(****) \int f(x)dx = \lim_{k \to \infty} \int \sin(n_k x)dx = 0.$ $E^{\dagger} \qquad k \to \infty \quad E^{\dagger}$ Combining (*), (**), and (****) yields $\frac{1}{2}m(E^{\dagger}) = 0.$

A similar argument shows that $\frac{1}{2}m(E^-) = 0$. But then, $\frac{1}{2}m(E) = \frac{1}{2}m(E^+) + \frac{1}{2}m(E^-) = 0$. Q.E.D.

$$\frac{\pm 6}{n} \cdot \frac{1}{n} \text{ Let } x \in [0, 1] \text{ and let } \langle x_n \rangle_{n=1}^{\infty} \text{ be a sequence of points}$$

in $[0, 1]$ converging to x. Then the Dominated Convergence Theorem implies
$$\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \int_{0}^{1} \chi_{[0, x_n]}(t) f(t) dt = \int_{0}^{1} \chi_{[0, x]}(t) f(t) dt = F(x).$$

Thus F is continuous on $[0, 1]$.
Thus F is continuous on $[0, 1]$.
$$\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \langle x_n < \dots < x_n = 1 \text{ be a partition of } [0, 1]. \text{ Then}$$

$$\sum_{k=1}^{n} |F(x_k) - F(x_{k-1})| = \sum_{k=1}^{n} |\int_{x_{k-1}}^{x_k} f(t) dt|$$

$$\begin{split} & \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} |f(t)| dt \\ & = \int_{0}^{1} |f(t)| dt \ . \end{split} \\ & \text{Therefore } V_{\text{Av}}(F_{j}, 0, 1) \in \int_{0}^{1} |f(t)| dt < \infty \quad \text{so } F \in \text{BV}[0, 1] \ . \end{split}$$

This (c) Because $F \in BV[0,1]$, Jordan's Theorem guarantees the existence of real increasing functions F_1 and F_2 on [0,1] such that $F = F_1 - F_2$. By Lebesgne's Theorem, $F_1'(x)$ and $F_2'(x)$ exist a.e. on [0,1], and consequently $F'(x) = F_1'(x) - F_2'(x)$ exists a.e. on [0,1].

Sphere (d) Suppose that $|f(t)| \leq M < \infty$ for all t in [0,1]. Fix y in (0,1)and let $\langle h_n \rangle_{n=1}^{\infty}$ be a sequence of nonzero real numbers which converges

to zero. Then
$$|F(t+h_n) - F(t)| = |\int_t^{t+h_n} f(s) ds| \le M|h_n|$$
 so

$$\frac{F(t+h_n)-F(t)}{h_n} \leq M \text{ for all } t \in (0,1) \text{ and } n \geq 1.$$
 Furthermore,

$$F'(t) = \lim_{n \to \infty} \frac{F(t+h_n) - F(t)}{h_n}$$
 exists a.e. in $(0,1)$, so the

Dominated Convergence Theorem yields

$$(\Box) \qquad \lim_{n \to \infty} \int_{0}^{y} \frac{F(t+h_{n}) - F(t)}{h_{n}} dt = \int_{0}^{y} F'(t) dt .$$

On the other hand,
(II)
$$\lim_{n \to \infty} \int_{0}^{y} \frac{F(t+h_{n}) - F(t)}{h_{n}} dt = \lim_{n \to \infty} \left(\frac{1}{h_{n}} \int_{0}^{y} F(t+h_{n}) dt - \frac{1}{h_{n}} \int_{0}^{y} F(t) dt \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{h_{n}} \int_{h_{n}}^{y+h_{n}} F(x) dx - \frac{1}{h_{n}} \int_{0}^{y} F(x) dx \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{h_{n}} \int_{y}^{y+h_{n}} F(x) dx - \frac{1}{h_{n}} \int_{0}^{y} F(x) dx \right)$$

$$= F(y) - F(0)$$

because F is continuous on [0,1] (see Rudin, Theorem 6.20). But (000) $F(y) - F(0) = \int_{0}^{y} f(t) dt$.

Applying (1), (00), and (001) and rearranging yields the desired result:

$$\int_{0}^{y} \{F'(t) - f(t)\} dt = 0 \quad \text{for} \quad y \text{ in } (0, 1).$$

Therefore
$$\int \left\{ F'(t) - f(t) \right\} dt = \sum_{k=1}^{N} \int \left\{ F(t) - f(t) \right\} dt = 0.$$

$$\begin{aligned} \text{Consequently}, \\ & \int_{E_{+}} \left\{ F'(t) - f(t) \right\} dt \\ & = \int_{E_{+$$

The proof of part (d) shows that if
$$|f(t)| \leq M$$
 in $[0,1]$ then $|F(t)| \leq M$
a.e. in $[0,1]$. Thus
 $0 \leq \int \{F(t) - f(t)\} dt \leq \int |F(t) - f(t)| dt + \int |F(t) - f(t)| dt$
 E_{+}
 $E_{+} \cup U_{-} K$
 $\int |F(t) - f(t)| dt + \int |F(t) - f(t)| dt$
 $E_{+} \cup U_{-} K$
 $\int |F(t) - f(t)| dt + \int |F(t) - f(t)| dt$
 $E_{+} \cup U_{-} K$
 $\int |F(t) - f(t)| dt + \int |F(t) - f(t)| dt$
 $\leq 2Mm(E_{+} \cup U_{-} K) + 2Mm(\bigcup_{i=k} E_{+})$
 $\leq 2M \in .$

.

Since
$$\varepsilon > 0$$
 is arbitrary, $\int \{F'(t) - f(t)\}_{p}dt = 0$. But $F'(t) - f(t) > 0$
on E_{+} so it follows that $m(E_{+}) = 0$. A similar argument shows
that $E_{-} = \{t \in [0,1] : F'(t) - f(t) < 0\}$ has measure zero. Therefore,
 $F'(t) - f(t) = 0$ a.e. in $[0,1]$.