Final Exam, Part II
Spring 2007

Name:

(1 pt.)

This portion of the 200-point final examination is open book/notes. You are to solve three problems of your choosing, subject to the constraint that at least one problem must be chosen from Group 1 and at least one problem must be chosen from Group 2.

Group 1.

1.(36 pts.) Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ denote the (infinite) sequence of prime numbers, let $\pi(x)$ denote the number of primes less than or equal to x, and let $f(x)=\frac{1}{x}$ for $x>0$.
(a) Show that $\int_{1}^{x} f(t) d(\pi(t))=\sum_{p_{k} \leq x} \frac{1}{p_{k}}$ for $x>2$.
(b) Show that $\int_{1}^{x} f(t) d(\pi(t))=\frac{\pi(x)}{x}+\int_{i}^{x} \frac{\pi(t)}{t^{2}} d t \quad$ for $x>2$.
(c) Use (a) and (b) to verify that

$$
\sum_{p_{k} \leq x} \frac{1}{p_{k}}=\ln (\ln (x))+\int_{e}^{x}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}+\int_{1}^{e} \frac{\pi(t)}{t^{2}} d t+\frac{\pi(x)}{x} \quad \text { for } x>2
$$

Assume that to each $a>0$ there correspond real constants $B=B(a)>1$ and $C=C(a)>0$ such that

$$
\begin{equation*}
\left|\pi(x)-\frac{x}{\ln (x)}\right| \leq C x e^{-a \sqrt{\ln (x)}} \quad \text { for } x \geq B . \tag{*}
\end{equation*}
$$

(d) Use $\left(^{*}\right)$ to help show that $\lim _{y>x \rightarrow \infty}\left|\int_{x}^{y}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}\right|=0$.
(e) Why does the improper Riemann integral $\int_{e}^{\infty}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}$ converge?
(f) Use (c) and (*) to help show that

$$
\lim _{x \rightarrow \infty}\left(\sum_{p_{k} \leq x} \frac{1}{p_{k}}-\ln (\ln (x))\right)=\int_{e}^{\infty}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}+\int_{i}^{e} \frac{\pi(t)}{t^{2}} d t .
$$

2.(36 pts.) Let F be a continuous real function on the unit cube

$$
\mathbf{Q}=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\right\}
$$

in \mathbb{R}^{3}. Show that to each $\varepsilon>0$ there corresponds a positive integer N and a finite collection $f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}$ of real polynomials on the unit interval $[0,1]$ such that

$$
\left|F(x, y, z)-\sum_{k=1}^{N} f_{k}(x) g_{k}(y) h_{k}(z)\right|<\varepsilon
$$

for all (x, y, z) in \mathbf{Q}.
3.(36 pts.) Consider the 2π-periodic function f determined by $f(x)=\frac{\pi-x}{2}$ if $-\pi \leq x<\pi$.
(a) Compute the Fourier series of f with respect to the orthogonal set of functions $\left\{e^{i n x}\right\}_{n=-\infty}^{\infty}$ on the interval $[-\pi, \pi]$.
(b) For each x in the interval $[-\pi, \pi]$, discuss the pointwise convergence (or lack thereof) of the Fourier series of f at x to $f(x)$.
(c) Discuss the uniform convergence (or lack thereof) of the Fourier series of f to the function f on $[-\pi, \pi]$.
(d) Discuss the L^{2}-convergence (or lack thereof) of the Fourier series of f to the function f on $[-\pi, \pi]$.
(e) Use the preceding to help compute the sums of $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}$ and $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$.

Group 2.

4. (36 pts.) Let $\left\langle a_{n}\right\rangle_{n=1}^{\infty}$ be a positive divergent sequence, and for every positive integer n let

$$
f_{n}(x)= \begin{cases}a_{n} & \text { if } x \in\left(\frac{1}{n+1}, \frac{1}{n}\right) \\ 0 & \text { otherwise in }(0,1)\end{cases}
$$

(a) If $\left\langle\frac{a_{n}}{n^{2}}\right\rangle_{n=1}^{\infty}$ is a bounded sequence, show that $\left\langle\int_{0}^{1} f_{n} d x\right\rangle_{n=1}^{\infty}$ is a bounded sequence.
(b) Place an X in each blank below that would imply

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} d x=\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n} d x
$$

and an O in each blank otherwise. Supply reasons for your answers.
(i) $\longrightarrow\left\langle\frac{a_{n}}{\ln (n)}\right\rangle_{n=2}^{\infty}$ is a bounded sequence.
(ii) $\quad \lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3} \ln \left(1+\frac{1}{\sqrt{n}}\right)}=0$.
(iii)

$$
\cdots \lim _{n \rightarrow \infty} \frac{a_{n}}{n^{2}}=0
$$

(iv) $\left\langle\frac{a_{n}}{n^{2} \ln (n)}\right\rangle_{n=2}^{\infty}$ is a bounded sequence.
5.(36 pts.) In this problem you may assume that the Riemann-Lebesgue Lemma holds for functions in $L^{1}(-\pi, \pi)$: If $f \in L^{1}(-\pi, \pi)$ then $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=0=\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \sin (n x) d x$.

Let $\left\langle n_{k}\right\rangle_{k=1}^{\infty}$ be an increasing sequence of positive integers, let E be the set of all x in $(-\pi, \pi)$ for which $\left\langle\sin \left(n_{k} x\right)\right\rangle_{k=1}^{\infty}$ is a convergent sequence, and let A be any measurable subset of E.
(a) Show that $\lim _{k \rightarrow \infty} \int_{A} \sin \left(n_{k} x\right) d x=0$.
(b) Show that $\lim _{k \rightarrow \infty} 2 \int_{A}\left(\sin \left(n_{k} x\right)\right)^{2} d x=\lim _{k \rightarrow \infty} \int_{A}\left(1-\cos \left(2 n_{k} x\right)\right) d x=m(A)$.
(c) Use (a) and (b) to help show that $m(E)=0$.
6.(36 pts.) Let f be a bounded measurable function on $[0,1]$ and define

$$
F(x)=\int_{0}^{x} f(t) d t \text { for } x \text { in }[0,1]
$$

(a) Show that F is continuous on $[0,1]$.
(b) Show that F is of bounded variation on [0,1].

Assume that Lebesgue's theorem for differentiation of monotone functions holds: If g is increasing on (a, b) then $g^{\prime}(x)$ exists a.e. in (a, b).
(c) Why does $F^{\prime}(x)$ exist a.e. in $(0,1)$?
(d) Use (c) to help show that $\int_{0}^{y}\left\{F^{\prime}(t)-f(t)\right\} d t=0$ for all y in $[0,1]$.
(e) Use (c) and (d) to help show that $F^{\prime}(x)=f(x)$ a.e. in $[0,1]$.
\#1. (a) Let $H(x)=\left\{\begin{array}{ll}0 & \text { if } x<0, \\ 1 & \text { if } x \geqslant 0,\end{array}\right.$ denote the Heaviside unit step function. Then $\pi(t)=\sum_{p_{k} \leq t} H\left(t-p_{k}\right)$ for $t>0$. Since $f(t)=\frac{1}{t}$ is continuous on $(0, \infty)$, Theorem 6.16 in Rudin implies that

$$
\int_{1}^{x} f(t) d(\pi(t))=\sum_{p_{k} \leqslant x} f\left(p_{k}\right)=\sum_{p_{k} \leqslant x} \frac{1}{p_{k}} \text { for } x>0 .
$$

(b) Note that f is continuous and of bounded variation on each closed, bounded subinterval of (0,0) and π is increasing, and hence of bounded variation, on each closed, bounded subinterval of $(0, \infty)$. Therefore integration-by-purts for Riemann-Stieltjes integrals and Theorem 6.17 in Rubin imply

$$
\begin{aligned}
\int_{1}^{x} f(t) d(\pi(t)) & =f(x) \pi(x)-f(1) \pi(1)-\int_{1}^{x} \pi(t) d(f(t)) \\
& =\frac{\pi(x)}{x}+\int_{1}^{x} \frac{\pi(t)}{t^{2}} d t \quad \text { for } x>0 .
\end{aligned}
$$

ipts....(c) By parts (a) and (b),
(f) $\sum_{p_{k} \leq x} \frac{1}{p_{k}}=\int_{1}^{x} f(t) d(\pi(t))=\frac{\pi(x)}{x}+\int_{1}^{x} \frac{\pi(t)}{t^{2}} d t$ for $x>0$.

For $x>1$, we have
(Ht)

$$
\begin{aligned}
\int_{1}^{x} \frac{\pi(t)}{t^{2}} d t & =\int_{1}^{e} \frac{\pi(t)}{t^{2}} d t+\int_{e}^{x}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}+\int_{e}^{x} \frac{d t}{t \ln (t)}\left\{\begin{array}{l}
L t \\
u=\ln (t) . \\
\pi \operatorname{len} \\
d u=\frac{1}{t} d t
\end{array}\right. \\
& =\int_{1}^{e} \frac{\pi(t)}{t^{2}} d t+\int_{e}^{x}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}+\int_{1}^{\ln (x)} \frac{1}{u} d u
\end{aligned}
$$

$$
=\int_{1}^{e} \frac{\pi(t)}{t^{2}} d t+\int_{e}^{x}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}+\ln (\ln (x))
$$

Substituting from (t) into (t) yields the desired identity for $x>1$:

$$
\sum_{p_{k} \leq x} \frac{1}{p_{k}}=\ln (\ln (x))+\int_{e}^{x}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}+\int_{1}^{e} \frac{\pi(t)}{t^{2}} d t+\frac{\pi(x)}{x} .
$$

(d) Fix $a>0$ and choose constants $B=B(a)>1$ and $C=C(k)>0$ such that
(*) holds. For all $y>x \geq B$ we have

$$
\begin{aligned}
& \left|\int_{x}^{y}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}\right| \leqslant \int_{x}^{y}\left|\pi(t)-\frac{t}{\ln (t)}\right| \frac{d t}{t^{2}} \\
& \leq \int_{x}^{y} \frac{C e^{-a \sqrt{\ln (t)}}}{t} d t \longleftrightarrow\left\{\begin{array}{l}
\text { Let } v^{2}=\ln (t) \\
\text { Then } 2 v d v=\frac{1}{t} d t
\end{array}\right. \\
& =\int_{\sqrt{\ln (x)}}^{\sqrt{\ln (y)}} 2 C v e^{-a v} d v \alpha\left\{\begin{array}{l}
\text { Let } v=2 C v \text { and } d V=e^{-a v} d v \\
\text { Then } d v=2 C d v \text { and } V=\frac{e^{-a v}}{-a}
\end{array}\right. \\
& =-\left.\frac{2 c v}{a} e^{-a v}\right|_{\sqrt{\ln (x)}} ^{\sqrt{\ln (y)}}+\int_{\sqrt{\ln (x)}}^{a} \frac{2 c}{a} e^{-a v} d v \\
& =\frac{2 C}{a}\left(\sqrt{\ln (x)} e^{-a \sqrt{\ln (x)}}-\sqrt{\ln (y)} e^{-a \sqrt{\ln (y)}}\right)+\frac{2 c}{a^{2}}\left(e^{-a \sqrt{\ln (x)}}-e^{-a \sqrt{\ln (y)}}\right) .
\end{aligned}
$$

Since $t e^{-a t} \rightarrow 0$ and $e^{-a t} \rightarrow 0$ as $t \rightarrow \infty$, it follows from the above estimate that

$$
\lim _{y>x \rightarrow \infty}\left|\int_{x}^{y}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}\right|=0 .
$$

(e) Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be any sequence of real numbers that tends to ∞ with n. Then part (d) shows that the sequence of numbers $\left\langle\int_{e}^{x_{n}}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}\right\rangle_{n=1}^{\infty}$ is Cauchy, and hence is convergent.
It follows that the improper Riemann integral

$$
\int_{e}^{\infty}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}=\lim _{x \rightarrow \infty} \int_{e}^{x}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}
$$

is convergent.
$6 * \ldots(f)$ From (*) we see that

$$
\begin{aligned}
\left|\frac{\pi(x)}{x}\right| & \leq\left|\frac{\pi(x)}{x}-\frac{1}{\ln (x)}\right|+\left|\frac{1}{\ln (x)}\right| \\
& \leq C e^{-a \sqrt{\ln (x)}}+\frac{1}{\ln (x)} \rightarrow 0 \text { as } x \rightarrow \infty .
\end{aligned}
$$

Therefore, (c) and (c) imply that

$$
\begin{gathered}
\lim _{x \rightarrow \infty}\left(\sum_{p_{k} \leq x} \frac{1}{p_{k}}-\ln (\ln (x))\right)=\lim _{x \rightarrow \infty}\left(\int_{e}^{x}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}+\int_{1}^{e} \frac{\pi(t)}{t^{2}} d t+\frac{\pi(x)}{x}\right) \\
=\int_{e}^{\infty}\left(\pi(t)-\frac{t}{\ln (t)}\right) \frac{d t}{t^{2}}+\int_{1}^{e} \frac{\pi(t)}{t^{2}} d t .
\end{gathered}
$$

\#2. Let Q be the family of all functions φ on Q of the form
(*) $\quad \phi(x, y, z)=\sum_{k=1}^{N} f_{k}(x) g_{k}(y) h_{k}(z)$
where N is some positive integer and $f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}$ is a (finite) collection of real polynomials on the unit interval $[0,1]$. Clearly Q is an algebra of real continuous functions on the compact metric space Q. Since $1 \in Q$, the algebra Q vanishes at no point of Q. Also, if $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are two distinct points of Q, then the function

$$
\varphi(x, y, z)=\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}
$$

belongs to Q and satisfies $\varphi\left(x_{1}, y_{1}, z_{1}\right)=0 \neq \varphi\left(x_{2}, y_{2}, z_{2}\right)$. Thus Q separates points on Q. The Stone-Weierstrass Theorem (7.32 in Rudin) then implies that Q is uniformly dense in $C(Q)$. That is, to each contionous real function F on Q and each $\varepsilon>0$, there corresponds a function φ of the form ($*$) in Q such that

$$
|F(x, y, z)-\varphi(x, y, z)|<\varepsilon
$$

for all (x, y, z) in Q.
\#3. (a) $\hat{f}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\pi-x}{2} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\pi}{2} d x=\frac{\pi}{2}$.
If $n \neq 0$ then

$$
\begin{aligned}
& n \neq 0 \text { then } \hat{f}^{n}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{\pi-x}{2}\right) \cos (n x) d x-\frac{i}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{\pi-x}{2}\right) \sin (n x) d x \\
& =\frac{1}{2 \pi}\left(\frac{\pi}{2}\right) \int_{-\pi}^{\pi} \cos (n x) d x-\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{x \cos (n x)}{0} d x-\frac{i}{2 \pi}\left(\frac{\pi}{2}\right) \int_{-\pi}^{\pi} \sin (n x) d x+\frac{i}{4 \pi} \int_{-\pi}^{\pi} \frac{e v e n}{x \sin (n x)} d x \\
& =\frac{i}{2 \pi} \int_{0}^{\pi} \frac{x \sin (n x) d x}{d \nabla}=\frac{i}{2 \pi}\left[\left.\frac{-x \cos (n x)}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi}-\frac{c \cos (n)}{n} d x\right]=\frac{-i \cos (n \pi)}{2 n}=\frac{i(-1)^{n+1}}{2 n}
\end{aligned}
$$

Therefore the fourier series of f is

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{i n x} & =\frac{\pi}{2}+\frac{i}{2} \sum_{n=1}^{\infty}\left(\frac{(-1)^{n+1} e^{i n x}}{n}+\frac{(-1)^{-n+1}}{-n} e^{-i n x}\right) \\
& =\frac{\pi}{2}+\frac{i}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(\overbrace{e^{i n x}-e^{-i n x}}^{2 i n(n x)} \\
& =\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin (n x)}{n} .
\end{aligned}
$$

(b) Since f is 2π-periodic and of bounded variation on $[-\pi, \pi]$, the DirichletJordan theorem (Rudin, p.200, \#17) implies

$$
\lim _{N \rightarrow \infty} S_{N}(f ; x)=\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]
$$

for all x in \mathbb{R}. Since f is continuous if $-\pi<x<\pi$ and satisfies $f\left(\pi^{+}\right)=f\left(-\pi^{+}\right)=\pi, f\left(-\pi^{-}\right)=f\left(\pi^{-}\right)=0$, it follows that

$$
\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin (n x)}{n}=\left\{\begin{array}{clc}
\pi / 2 & \text { if } & x=-\pi, \\
\frac{\pi-x}{2} & \text { if } & -\pi<x<\pi, \\
\pi / 2 & \text { if } & x=\pi .
\end{array}\right.
$$

In particular, the Fourier series of f converges to $f(x)$ for all $-\pi<x<\pi$, but the Fourier series of does not converge to $f(-\pi)$ nor $f(\pi)$ at the endpoints $x= \pm \pi$.
(c) Since the Fourier series of f does not converge pointwise to f on $[-\pi, \pi]$, it follows that the Fourier series of f does not converge uniformly to f opts. on $[-\pi, \pi]$.
(d) Since f is 2π-periodic and Riemann integrable on $[-\pi, \pi]$, the Fourier series of f converges in the L^{2}-sense to for $[-\pi, \pi]$ (see Rudin, Theorem 8.16)
(e) By part (c),

$$
\frac{\pi}{4}=f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{(-1) \sin (n \pi / 2)}{n}
$$

But $\sin \left(n \frac{\pi}{2}\right)=\left\{\begin{array}{c}0 \text { if } n=2 k \text { is even, } \\ (-1)^{k} \text { if } n=2 k+1 \text { is od, }\end{array}\right.$ so

$$
\frac{\pi}{4}=\frac{\pi}{2}+\sum_{k=0}^{\infty} \frac{(-1)^{2 k+1} \cdot(-1)^{k}}{2 k+1}=\frac{\pi}{2}-\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}
$$

and hence $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}=\frac{\pi}{4}$. +4 pts.
By Parseval'' Theorem (Rudin, Theorem 8.16),

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2}
$$

Therefore

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{\pi-x}{2}\right)^{2} d x=\left|\frac{\pi}{2}\right|^{2}+\sum_{n=1}^{\infty}\left(\left|\frac{i(-1)^{n+1}}{2 n}\right|^{2}+\left|\frac{i(-1)^{-n+1}}{2(-n)}\right|^{2}\right) \\
\Rightarrow & \frac{\pi^{2}}{3}=\frac{\pi^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
\Rightarrow & \frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} .
\end{aligned}
$$

\#4. (a) ${ }^{6}$ suppose $0 \leq \frac{a_{n}}{n^{2}} \leq M$ for some real number M and all integers $n \geqslant 1$. Then

$$
0 \leq \int_{0}^{1} f_{n} d x=\int_{1 / n+1}^{1 / n} a_{n} d x=a_{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\frac{a_{n}}{n(n+1)} \leq \frac{a_{n}}{n^{2}} \leq M
$$

for all $n \geqslant 1$ so $\left\langle\int_{0}^{1} f_{n} d x\right\rangle_{n=1}^{\infty}$ is a bounded sequence.
(b) Clearly $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for each x in $(0,1)$ so $\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n} d x=\int_{0}^{1} o d x=0$

Note also that the computation in part (a) shows that $\int_{0}^{1} f_{n} d x=\frac{a_{n}}{n(n+1)}$ for all $n \geqslant 1$. Therefore $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} d x=\int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}\right) d x$ if and only if $\lim _{n \rightarrow \infty} \frac{a_{n}}{n(n+1)}=0$
(i) Suppose that there is a real number M such that $0 \leq \frac{a_{n}}{\ln (n)} \leq M$ for all $n \geq 2$. Then

$$
0 \leqslant \frac{a_{n}}{n(n+1)}=\frac{a_{n}}{\ln (n)} \cdot \frac{\ln (n)}{n(n+1)} \leq \frac{M \ln (n)}{n(n+1)} \rightarrow 0 \text { as } n \rightarrow \infty \text {, }
$$

so the " X " in the blank is justified.
(ii) It is easy to see (using concavity of $x \mapsto \ln (1+x))$ that $\frac{x}{2} \leqslant \ln (1+x) \leq x$ for all $0 \leq x \leq 2$, so $\frac{1}{2 \sqrt{n}} \leq \ln \left(1+\frac{1}{\sqrt{n}}\right) \leq \frac{1}{\sqrt{n}}$ for all $n \geq 1$. Therefore we take $a_{n}=n^{2}$ for $n \geqslant 1$ and note that

$$
0 \leqslant \frac{a_{n}}{n^{3} \ln \left(1+\frac{1}{\sqrt{n}}\right)}=\frac{1}{n \ln \left(1+\frac{1}{\sqrt{n}}\right)} \leq \frac{2}{\sqrt{n}} \rightarrow 0 \text { as } n \rightarrow \infty \text {. }
$$

However $\frac{a_{n}}{n(n+1)}=\frac{n}{n+1} \rightarrow 1$ as $n \rightarrow \infty$, so the " 0 " in the blank is justified.

Tpts-(iii) Suppose $\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{2}}=0$. Then

$$
0 \leq \frac{a_{n}}{n(n+1)} \leq \frac{a_{n}}{n^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

so the " x " in the blank is justified.
7 pts....(iv) We may take $a_{n}=n^{2} \ln (n)$ for $n \geqslant 1$ and note that $\frac{a_{n}}{n^{2} \ln (n)}=1$ is bounded and $\frac{a_{n}}{n(n+1)}=\frac{n \ln (n)}{n+1} \rightarrow \infty$ as $n \rightarrow \infty$. Therefore the " O " in the blank is justified.
\#5. (a) Note that $f(x)=x_{A}(x)$ is a measurable function on $(-\pi, \pi)$ with $\int_{-\pi}^{\pi}|f(x)| d x=\int_{-\pi}^{\pi} x_{A}(x) d x=m(A)<\infty$ so $f \in L^{\prime}(-\pi, \pi)$. By the
Riemann-Lebesque Lemma,

$$
0=\lim _{k \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \sin \left(n_{k^{x}}\right) d x=\lim _{k \rightarrow \infty} \int_{A} \sin \left(n_{k^{x}}\right) d x
$$

(b) By the Riemann-Lebesque Lemma,
(t) $\quad 0=\lim _{k \rightarrow \infty} \int_{-\pi}^{\pi} x(x) \cos \left(2 n_{k^{x}}\right) d x=\lim _{k \rightarrow \infty} \int_{A} \cos \left(2 n_{k} x\right) d x$.

Using the identity $2 \sin ^{2}(\theta)=1-\cos (2 \theta)$ and (t), we have

$$
\lim _{k \rightarrow \infty} 2 \int_{A}\left[\sin \left(n k^{x}\right)\right]^{2} d x=\lim _{k \rightarrow \infty} \int_{A}\left[1-\cos \left(2 n_{k} x\right)\right] d x=\int_{A} 1 d x-\lim _{k \rightarrow \infty} \int_{A} \cos \left(2 n_{k} x\right) d x=m(A) .
$$

10.....(c) The assumptions of this problem imply that $f(x)=\lim _{k \rightarrow \infty} \sin \left(n_{k^{x}}\right)$ exists for all x in E. Let $E^{+}=\{x \in E: f(x) \geq 0\}$ and $E^{-}=E \backslash E^{+}$. Then E^{+}and E^{-}are measurable subsets of the measurable set $E \subseteq(-\pi, \pi)$ with $E^{+} \cap E^{-}=\phi$ and $E^{+} \cup E^{-}=E$. By part (b) and the Dominated Convergence Theorem,

$$
\text { (*) } \frac{1}{2} m\left(E^{+}\right)=\lim _{k \rightarrow \infty} \int_{E^{+}}\left[\sin \left(n_{k^{x}} x\right)\right]^{2} d x=\int_{E^{+}} \lim _{k \rightarrow \infty}\left[\sin \left(n_{k^{x}} x\right)\right]^{2} d x=\int_{E^{+}} f^{2}(x) d x \text {. }
$$

But $f: E \rightarrow[-1,1]$ so $f^{2}(x) \leqslant|f(x)|$ on E. Also $|f(x)|=f(x)$ on E^{+}, so
(**) $\int_{E^{+}} f^{2}(x) d x \leq \int_{E^{+}} f(x) d x$.
On the other hand, the Dominated Convergence Theorem and part (a) imply (***) $\int_{E^{+}} f(x) d x=\lim _{k \rightarrow \infty} \int_{E^{+}} \sin \left(n_{k} x\right) d x=0$.

Combining $(*),(* *)$, and $(* * *)$ yields $\frac{1}{2} m\left(E^{+}\right)=0$.
A similar argument shows that $\frac{1}{2} m\left(E^{-}\right)=0$. But then, $\frac{1}{2} m(E)=\frac{1}{2} m\left(E^{+}\right)+\frac{1}{2} m\left(E^{-}\right)=0 . \quad$ Q.E.D.
46. (a) Let $x \in[0,1]$ and let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence of points in $[0,1]$ converging to x. Then the Dominated Convergence Theorem implies

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=\lim _{n \rightarrow \infty} \int_{0}^{1} x_{\left[0, x_{n}\right]}(t) f(t) d t=\int_{0}^{1} x_{[0, x]}(t) f(t) d t=F(x) .
$$

Thus F is continuous on $[0,1]$.
pis.... (b) Let $0=x_{0}<x_{1}<\ldots<x_{n}=1$ be a partition of $[0,1]$. Then

$$
\begin{aligned}
\sum_{k=1}^{n}\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right| & =\sum_{k=1}^{n}\left|\int_{x_{k-1}}^{x_{k}} f(t) d t\right| \\
& \leqslant \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}}|f(t)| d t \\
& =\int_{0}^{1}|f(t)| d t .
\end{aligned}
$$

Therefore $\operatorname{Var}(F ; 0,1) \leq \int_{0}^{1}|f(t)| d t<\infty$ so $F \in B V[0,1]$.
$7, \ldots(c)$ Because $F \in B V[0,1]$, Jordan's Theorem guarantees the existence of real increasing functions F_{1} and F_{2} on $[0,1]$ such that $F=F_{1}-F_{2}$. By Lebesgue's theorem, $F_{1}^{\prime}(x)$ and $F_{2}^{\prime}(x)$ exist a.e. on $[0,1]$, and consequently $F^{\prime}(x)=F_{1}^{\prime}(x)-F_{2}^{\prime}(x)$ exists a.e. on $[0,1]$.

Spiny. (d) Suppose that $|f(t)| \leq M<\infty$ for all t in $[0,1]$. Fix y in $(0,1)$ and let $\left\langle h_{n}\right\rangle_{n=1}^{\infty}$ be a sequence of nonzero real numbers which converges
to zero. Then $\left|F\left(t+h_{n}\right)-F(t)\right|=\left|\int_{t}^{t+h_{n}} f(s) d s\right| \leq M\left|h_{n}\right|$ so $\left|\frac{F\left(t+h_{n}\right)-F(t)}{h_{n}}\right| \leq M$ for all $t \in(0,1)$ and $n \geq 1$. Furthermore, $F^{\prime}(t)=\lim _{n \rightarrow \infty} \frac{F\left(t+h_{n}\right)-F(t)}{h_{n}}$ exists a.e. in $(0,1)$, so the Dominated Convergence Theorem yields
(a) $\quad \lim _{n \rightarrow \infty} \int_{0}^{y} \frac{F\left(t+h_{n}\right)-F(t)}{h_{n}} d t=\int_{0}^{y} F^{\prime}(t) d t$.

On the other hand,
(aa)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{y} \frac{F\left(t+h_{n}\right)-F(t)}{h_{n}} d t=\lim _{n \rightarrow \infty}\left(\frac{1}{h_{n}} \int_{0}^{y} F\left(t+h_{n}\right) d t-\frac{1}{h_{n}} \int_{0}^{y} F(t) d t\right) \\
& \quad=\lim _{n \rightarrow \infty}\left(\frac{1}{h_{n}} \int_{h_{n}}^{y+h_{n}} F(x) d x-\frac{1}{h_{n}} \int_{0}^{y} F(x) d x\right) \\
& \quad=\lim _{n \rightarrow \infty}\left(\frac{1}{h_{n}} \int_{y}^{y+h_{n}} F(x) d x-\frac{1}{h_{n}} \int_{0}^{h_{n}} F(x) d x\right) \\
& \quad=F(y)-F(0)
\end{aligned}
$$

because F is continuous on $[0,1]$ (see Rudin, Theorem 6.20). But (000)

$$
F(y)-F(0)=\int_{0}^{y} f(t) d t .
$$

Applying ($(0),(00)$, and (000) and rearranging yields the desired result:

$$
\int_{0}^{y}\left\{F^{\prime}(t)-f(t)\right\} d t=0 \quad \text { for } \quad y \text { in }(0,1)
$$

7 pts.... (e) Let $E_{t}=\left\{t \in[0,1]: F^{\prime}(t)-f(t)>0\right\}$ and let $\varepsilon>0$. By Littlewood's first principle, there exists a finite collection $I_{1}=\left(a, b_{1}\right), \ldots, I_{N}=\left(a_{N}, b_{N}\right)$ of open intervals in $[0,1]$ such that $m\left(\bigcup_{k=1}^{N} I_{k} \Delta E_{+}\right)<\varepsilon$. Without loss of generality we may assume $I_{j} \cap I_{k}=\phi$ for $j \neq k$. By part (d),

$$
\begin{aligned}
\int_{I_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t=\int_{a_{k}}^{b_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t & =\int_{0}^{b_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t-\int_{0}^{a_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t \\
& =0 .
\end{aligned}
$$

Therefore $\int_{\substack{N \\ k=1 \\ I_{k}}}\left\{F^{\prime}(t)-f(t)\right\} d t=\sum_{k=1}^{N} \int_{I_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t=0$.
Consequently,

$$
\begin{aligned}
& \int_{E_{t}}\left\{F^{\prime}(t)-f(t)\right\} d t=\int_{E_{+} \backslash \bigcup_{1} I_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t+\int_{E_{+} \cap \tilde{U}_{1} I_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t \\
& =\int_{E_{+} \backslash \bigcup_{1} I_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t+\int_{I_{1} I_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t-\int_{U_{1} I_{k} \backslash E_{t}}\left\{F^{\prime}(t)-f(t)\right\} d t \\
& =\int_{E_{t} \backslash U I_{k}}\left\{F^{\prime}(t)-f(t)\right\} d t-\int_{U I_{b} \backslash E_{1}}\left\{F^{\prime}(t)-f(t)\right\} d t .
\end{aligned}
$$

The proof of part (d) shows that if $|f(t)| \leq M$ in $[0,1]$ then $\left|F^{\prime}(t)\right| \leq M$ a.e. in $[0,1]$. Thus

$$
\begin{aligned}
0 \leq \int_{E_{+}}\left\{F^{\prime}(t)-f(t)\right\} & \leq \int_{E_{+} \backslash U_{1}^{N} I_{k}}\left|F^{\prime}(t)-f(t)\right| d t+\int_{N}\left|F^{\prime}(t)-f(t)\right| d t \\
& \leq 2 M m\left(E_{+}, U_{1}^{N} I_{k}\right)+2 M m\left(E_{+}\right. \\
& \left.<2 I_{k} \backslash E_{+}\right) \\
&
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, $\int_{E_{+}}\left\{F^{\prime}(t)-f(t)\right\} d t=0$. But $F^{\prime}(t)-f(t)>0$ on E_{+}so it follows that $m\left(E_{+}\right)=0$. A similar argument shows that $E_{-}=\left\{t \in[0,1]: F^{\prime}(t)-f(t)<0\right\}$ has measure zero. Therefore, $F^{\prime}(t)-f(t)=0$ are. in $[0,1]$.

