Mathematics 325

Homework 14
Due Date: \qquad
Name:
(a) Find a solution to

$$
u_{t}-u_{x x}=0 \text { for } 0<x<1,0<t<\infty,
$$

subject to

$$
u_{x}(0, t)=0=u_{x}(1, t) \quad \text { for } t \geq 0
$$

and

$$
u(x, 0)=\cos ^{2}(\pi x), \quad u_{t}(x, 0)=0 \quad \text { for } 0 \leq x \leq 1
$$

(b) Use the energy method to show that there is only one solution to the problem in part (a).

HW 14: (a) $n(x, t)=X(x) T(t)$ in the homogeneness portion of the problem lend to $\begin{cases}Z^{\prime \prime}(x)+\lambda \bar{X}(x)=0, & \Psi^{\prime}(0)=0=X^{\prime}(1), \\ T^{\prime \prime}(t)+\lambda T(t)=0, & T^{\prime}(0)=0 .\end{cases}$
209. Te eigenvalues are $\lambda_{n}=(n \pi)^{2}$ and the eigenfunction are $X_{n}(x)=\cos (n \pi x) \quad(n=0,1,2, \ldots$

30\% The solution to the t-proble mi in $T_{n}(t)=\cos (n \pi t) \quad(n=0,1,2, \ldots)$) Hence

$$
n(x, t)=\sum_{n=0}^{N} a_{n} \cos (n \pi x) \cos (n \pi t)
$$

solves the homozencour portion of the problem for any $N \geqslant 1$ ard an g constant $8, \ldots, a_{1}$

$$
\frac{1}{2}+\frac{1}{2} \cos (2 \pi x)=\cos ^{2}(\pi x) \stackrel{\text { went. }}{=} u(x, 0)=\sum_{n=0}^{N} a_{n} \cos (n \pi x) \text { for } 0 \leq x \leq 1 \Rightarrow a_{0}=\frac{1}{2}, a_{2}=\frac{1}{2} \text {, and }
$$

50\% all other $a_{n}=0 . \therefore u(x, t)=\frac{1}{2}+\frac{1}{2} \cos (2 \pi x) \cos (2 \pi t)$
(b) Let $v=v(x, t)$ be any other solution to the problem in (a) and consider the 15\% uni ry function $E(t)=\frac{1}{2} \int_{0}^{1}\left[w_{t}^{2}(x, t)+w_{x}^{2}(x, t)\right] d x$ of the differcece $w(x, t)=u(x, t)-v(x, t)$. notethat w solves $w_{t t}-w_{x x}=0$ in $0<x<1,0<t<\infty, w_{x}(0, t)={ }_{0}^{(Q)}{ }_{0}^{(3)} w_{x}(1, t)$ for $t \geqslant 0$, $w(x, 0) \stackrel{\oplus}{=} \stackrel{(5)}{=} w_{t}(x, 0)$ for $0 \leq x \leq 1-\frac{d E}{d t}=\frac{1}{2} \int_{0}^{1} \frac{\partial}{\partial t}\left[w_{t}^{2}(x, t)+w_{x}^{2}(x, t)\right] d x=$ $\int_{0}^{1}\left[w_{t}(x, t) w_{t t}(x, t)+w_{x}(x, t) w_{x t}(x, t)\right] d x \stackrel{(0}{=} \int_{0}^{1}\left[w_{t}(x, t) w_{x x}(x, t)+w_{x}(x, t) w_{x t}(x, t)\right] d x$ 30% $=\int_{0}^{1} \frac{\partial}{\partial x}\left[w_{t}(x, t) w_{x}(x, t)\right] d x=w_{t}(1, t) \frac{0}{w_{x}(1, t)-w_{t}(0, t) w_{x}(0, t)} \stackrel{0}{0} \stackrel{(3)}{=} 0$. Therefore, to\% for all $t \geqslant 0, E(t)=E(0)=\frac{1}{2} \int_{0}^{1}\left[w_{t}^{2}(x, 0)+w_{x}^{2}(x, 0)\right] d x=0$. By the mushing theorem, it follows that $\frac{1}{2}\left[w_{t}^{2}(x, t)+w_{x}^{2}(x, t)\right]=0$ for all $0 \leq x \leq 1$ and all $t \geq 0$. Comequently $w_{t}(x, t)=w_{x}(x, t)=0$ for all $0 \leq x \leq 1$ and all $0 \leq t$. At follows that $W(x, t)=$ constant for all $0 \leq x \leq 1,0 \leq t$. But (3) inglias this constant is zero.

$$
\text { 50\% I.e. } u(x, t)=v(x, t) \text { fo all } 0 \leq x \leq 1 \text { and all } t \geqslant 0 \text {. }
$$

