Mathematics 325 Homework 14

	Due Date:
	Name:
(a) Find a solution to	
subject to	$u_{tt} - u_{xx} = 0$ for $0 < x < 1, 0 < t < \infty$,
•	$u_x(0,t) = 0 = u_x(1,t)$ for $t \ge 0$,
and	$u(x,0) = \cos^2(\pi x), u_1(x,0) = 0 \text{for } 0 < x < 1$

(b) Use the energy method to show that there is only one solution to the problem in part (a).

HW 14: (a) u(x,t) = X(x)T(t) in the homogeneous portion of the problem leads to $\begin{cases} X''(x) + \lambda X(x) = 0, & X'(0) = 0 = X'(1), \\ T''(t) + \lambda T(t) = 0, & T'(0) = 0. \end{cases}$

The eigenvalues are $\lambda_n = (n\pi)^2$ and the eigenfunctions are $X_n(x) = \cos(n\pi x)$ (n=0,1,2,...) The solution to the t-problem is $T_n(t) = \cos(n\pi t)$ (n=0,1,2,...) Hence

 $u(x,t) = \sum_{n=0}^{N} a_n cos(n\pi x) cos(n\pi t)$

solves the homogeneous pertion of the problem for any $N \ge 1$ and any constants a_0, \dots, a_N $\frac{1}{2} + \frac{1}{2} \cos(2\pi x) = \cos^2(\pi x) = u(x,0) = \sum_{n=0}^{N} a_n \cos(n\pi x) \text{ for } 0 \le x \le 1 \Rightarrow a_0 = \frac{1}{2}, a_2 = \frac{1}{2}, \text{ and}$ $1 + \frac{1}{2} \cos(2\pi x) = \cos^2(\pi x) = u(x,0) = \sum_{n=0}^{N} a_n \cos(n\pi x) \text{ for } 0 \le x \le 1 \Rightarrow a_0 = \frac{1}{2}, a_2 = \frac{1}{2}, \text{ and}$ $1 + \frac{1}{2} \cos(2\pi x) = \cos^2(\pi x) = \frac{1}{2} + \frac{1}{2} \cos(2\pi x) \cos(2\pi t)$ $1 + \frac{1}{2} \cos(2\pi x) = \frac{1}{2} + \frac{1}{2} \cos(2\pi x) \cos(2\pi t)$

(b) Let v = v(x,t) be any other solution to the problem in (a) and consider the energy function $E(t) = \frac{1}{2} \int [w_{k}^{2}(x,t) + w_{k}^{2}(x,t)] dx$ of the difference w(x,t) = u(x,t) - v(x,t). Note that w solves $w_{kt} - w_{xx} = 0$ in 0 < x < 1, $0 < t < \infty$, $w_{k}(0,t) \stackrel{\circ}{=} 0 \stackrel{\circ}{=} w_{k}(1,t)$ for $t \ge 0$, $w_{k}(0,t) \stackrel{\circ}{=} 0 \stackrel{\circ}{=} w_{k}(1,t)$ for $t \ge 0$, $w_{k}(0,t) = 0$ for $v_{k}(0,t) = 0$ for $v_{k}(0,t) = 0$ for $v_{k}(0,t) = 0$. Therefore, for all $t \ge 0$, $v_{k}(0,t) = 0$. Therefore, $v_{k}(0,t) = 0$ for all $v_{k}(0,t) = 0$. By the remission theorem, it follows that $\frac{1}{2} \left[w_{k}^{2}(x,t) + w_{k}^{2}(x,t)\right] = 0$ for all $v_{k}(0,t) = 0$. Consequently $v_{k}(x,t) = v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$. By that $v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$. Consequently $v_{k}(x,t) = v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$. By that $v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$. Therefore, $v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$. For all $v_{k}(x,t) = 0$, $v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$. Therefore, $v_{k}(x,t) = 0$. Therefore, $v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$. By the remission theorem, it follows that $v_{k}(x,t) = 0$ for all $v_{k}(x,t) = 0$. By the remission $v_{k}(x,t) = 0$. Therefore, $v_{k}(x,t) = 0$. Therefore, $v_{k}(x,t) = 0$. Therefore, $v_{k}(x,t) = 0$. By the remission $v_{k}(x,t) = 0$, $v_{k}(x,t) =$

T.e. u(x,t) = v(x,t) for all $0 \le x \le 1$ and all $t \ge 0$.

50%

10%0