Mathematics 325

Homework Assignment 1

Due Date:

\qquad
Name: \qquad
Work exercise 3 on page 5 of Strauss.
3. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous; provide reasons.
(a) $u_{t}-u_{x x}+1=0$
(b) $u_{t}-u_{x x}+x u=0$
(c) $u_{t}-u_{x x t}+u u_{x}=0$
(d) $u_{t t}-u_{x x}+x^{2}=0$
(e) $i u_{t}-u_{x x}+u / x=0$
(f) $u_{x}\left(1+u_{x}^{2}\right)^{-1 / 2}+u_{y}\left(1+u_{y}^{2}\right)^{-1 / 2}=0$
(g) $u_{x}+e^{y} u_{y}=0$
(h) $u_{t}+u_{x x x x}+\sqrt{1+u}=0$
\#3 (a) of $\mathscr{L}(u)=u_{t}-u_{x x}$ then the PDE may he expressed as $\mathscr{L}(u)=-1$

$$
\begin{aligned}
& \mathcal{L}(u+v)=(u+v)_{t}-(u+v)_{x x}=u_{t}+v_{t}-u_{x x}-v_{x x}=u_{t}-u_{x x}+v_{t}-v_{x x}=\mathcal{L}(u)+\mathscr{L}(v) \\
& \mathcal{L}(k u)=(k u)_{t t}-(k u)_{x x}=k u_{t t}-k u_{x x}=k\left(u_{t t}-u_{x x}\right)=k \mathcal{L}(u)
\end{aligned}
$$

Therefore the $P E E$ is linear, inhomogeneous, and of recondorder.
(b) If $\mathscr{L}(u)=u_{t}-u_{x x}+x u$ then the PDE may he ergrened as $\mathscr{L}(u)=0$

$$
\begin{aligned}
& \mathscr{L}(u+v)=(u+v)_{t}-(u+v)_{x x}+x(u+v)=u_{t}-u_{x x}+x u+v_{t}-v_{x x}+v x=\mathscr{L}(u)+\mathscr{L}(v) \\
& \mathscr{L}(k u)=(k u)_{t}-(k u)_{x x}+x(k u)=k\left(u_{t}-u_{x x}+x u\right)=k \mathscr{L}(u) .
\end{aligned}
$$

Therefore the PDE is linear, hanogencous, and frecond order.
(c) If $\mathscr{L}(u)=u_{t}-u_{x x t}+u u_{x}$ then the PDE mey he expressed as $\mathcal{L}(u)=0$

$$
\begin{aligned}
& \mathscr{L}(k u)=(k u)_{t}-(k u)_{x \times t}+(k u)(k u)_{x}=k u_{t}-k u_{x x t}+\left(k u u_{x}^{2}\right. \\
& \left.k \mathcal{L}(u)=\underset{\substack{ \\
\operatorname{cod} n_{t}-u_{x \times t} \neq 0}}{ }+u u_{x}\right)=k u_{t}-k u_{x a t}+k u_{x}
\end{aligned}
$$

Therefore the PDE is nonlinearpad of theid ader.
(d) If $\mathscr{L}(u)=u_{t t}-u_{x x}$ then the PDE mayple expreseed as $\mathscr{L}(u)=-x^{2}$.

$$
\begin{aligned}
& \mathscr{L}(u+v)=(u+v)_{t t}-(u+v)_{x x}=u_{t t}-u_{x x}+v_{t t}-v_{x x}=\mathscr{L}(u)+\mathscr{L}(v) . \\
& \mathscr{L}(k u)=(k u)_{t t}-(k u)_{x x}=k u_{t t}-k u_{x x}=k \mathscr{L}(u) .
\end{aligned}
$$

Therefore the PDE is linear, inhomogenesus, and of recondordor.
(e) of $\mathscr{L}(u)=i u_{t}-u_{x x}+\frac{1}{x} u$ then the PDE may le expressed as $\mathscr{L}(u)=$

$$
\begin{aligned}
& \mathscr{L}(u+v)=i(u+v)_{t}-(u+v)_{x x}+\frac{1}{x}(u+v)=i u_{t}-u_{x x}+\frac{1}{x} u+i v_{t}-v v_{x x}+\frac{1}{x} v=\mathscr{L}(u)+\mathscr{L}(v \\
& \mathscr{L}(k u)=i(k u)_{t}-(k u)_{x x}+\frac{1}{x}(k u)=k\left(i u_{t}-u_{x x}+\frac{1}{x} u\right)=k \mathscr{L}(u) .
\end{aligned}
$$

Therefore the PDE is linear, homogeneous, and of second adder.
(f) If $\mathscr{L}(u)=\frac{u_{x}}{\sqrt{1+u_{x}^{2}}}+\frac{u_{y}}{\sqrt{1+u_{y}^{2}}}$ then the PDEmay be expressed as $\mathscr{L}(u)=0$

$$
\begin{aligned}
& \mathscr{L}(k u)=\frac{(k u)_{x}}{\sqrt{1+(k u)_{x}^{2}}}+\frac{\left(k u_{y}\right.}{\sqrt{1+(k u)_{y}^{2}}}=k\left(\frac{u_{x}}{\sqrt{1+k^{2} u_{x}^{2}}}+\frac{y_{y}}{\sqrt{1+k^{2} u_{y}^{2}}}\right) \\
& k \mathcal{L}(u)=k\left(\frac{u_{x}}{\sqrt{1+u_{x}^{2}}}+\frac{u_{y}}{\sqrt{1+u_{y}^{2}}}\right) .
\end{aligned}
$$

Notice that of $k^{2}>1$ and $u_{x}>0, u_{y}>0$ then

$$
\mathscr{L}(k u)=k\left(\frac{u_{x}}{\sqrt{1+k^{2} u_{x}^{2}}}+\frac{u_{y}}{\sqrt{1+k^{2} u_{y}^{2}}}\right)<k\left(\frac{u_{x}}{\sqrt{1+u_{x}^{2}}}+\frac{u_{y}}{\sqrt{1+u_{y}^{2}}}\right)=k \mathcal{L}(u) .
$$

Therefore the PDE is wollieas and of fist oder.
(g) If $\mathcal{L}(u)=u_{x}+e_{y}^{y} u_{y}$ then the PDE has the form $\mathcal{L}(u)=0$.

$$
\begin{aligned}
& \mathscr{L}(u+v)=(u+v)_{x}+e^{y}(u+v)_{y}=u_{x}+e^{y} u_{y}+v_{x}+e^{y} v_{y}=\mathscr{L}(u)+\mathscr{L}(v) . \\
& \mathscr{L}(k u)=(k u)_{x}+e^{y}(k u)_{y}=k\left(u_{x}+e^{u_{y}}\right)=k \mathscr{L}(u) .
\end{aligned}
$$

Therefore the PDE is linear, homogeneous, ard of foist order.

$$
\begin{align*}
& \text { (h) } f \mathscr{L}(u)=u_{t}+u_{x x x x}+\sqrt{1+u}=0 \text { then the PDDE is } \mathscr{L}(u)=0 . \\
& \mathscr{L}(k u)=(k u)_{t}+(k u)_{x \times x x}+\sqrt{1+(k u)}=k u_{t}+k u_{x x x x}+\sqrt{1+k u} \\
& k \mathscr{L}(u)=k u_{t}+k u_{x x x x}+k \sqrt{1+u}=k u_{t}+k u_{x \times x x x}+\sqrt{k^{2}+k^{2} u} \tag{ft}
\end{align*}
$$

If $k>1$ and $u>0$ then $k^{2}+k^{2} u>1+k u$, so comparing The previous two equations yields $k \mathscr{L}(u)>\mathscr{L}(k u)$.
Therefore the PDE is nonlinear and of fourth order.

