Mathematics 325 Homework Assignment 4

Due Date: _____

Name:

Work exercise 5 on page 24 and exercise 4 on page 27.

5. Two homogeneous rods have the same cross section, specific heat c, and density ρ but different heat conductivities κ_1 and κ_2 and lengths L_1 and L_2 .

Let $k_j = \kappa_j/c\rho$ be their diffusion constants. They are welded together so that the temperature u and the heat flux κu_x at the weld are continuous. The left-hand rod has its left end maintained at temperature zero. The right-hand rod has its right end maintained at temperature T degrees.

- (a) Find the equilibrium temperature distribution in the composite rod.
- (b) Sketch it as a function of x in case $k_1 = 2, k_2 = 1, L_1 = 3, L_2 = 2$, and T = 10. (This exercise requires a lot of elementary algebra, but it's worth it.)

4. Consider the Neumann problem

$$\Delta u = f(x, y, z) \quad \text{in } D$$
$$\frac{\partial u}{\partial n} = 0 \quad \text{on bdy } D.$$

- (a) What can we surely add to any solution to get another solution? So we don't have uniqueness.
- (b) Use the divergence theorem and the PDE to show that

$$\iiint_D f(x, y, z) \, dx \, dy \, dz = 0$$

is a necessary condition/for the Neumann problem to have a solution.

(c) Can you give a physical interpretation of part (a) and/or (b) for either heat flow or diffusion?

$$\begin{array}{c} \#5,p.24 \\ \begin{pmatrix} u_{t}-k_{1}u_{xx} = 0 & \text{if } 0 < x < L_{1}, t > 0, \left(k_{1} = \frac{\kappa_{1}}{cp}\right) \\ u_{t}-k_{2}u_{xx} \stackrel{@}{=} 0 & \text{if } L_{1} < x < L_{1}+L_{2}, t > 0, \left(k_{2} = \frac{\kappa_{x}}{cp}\right) \\ \lim_{k \to L_{1}} u(x,t) \stackrel{@}{=} \lim_{k \to L_{1}^{+}} u(x,t) & \text{and } \lim_{k \to L_{1}^{-}} \kappa_{1}u(x,t) \stackrel{@}{=} \lim_{x \to L_{1}^{+}} \kappa_{2}u_{x}(x,t) & \text{for } t_{xx} \\ u(o_{1}t) \stackrel{@}{=} 0 & \text{and } u(L_{1}+L_{2},t) \stackrel{@}{=} T & \text{for } t > 0. \end{array}$$

(a) Let
$$U(x) = \lim_{t \to \infty} u(x,t)$$
 be the equilibrium solution of the above problem.
Then since U is independent of t , from () and () receheve
 $U(x) = \begin{cases} ax + b & \text{if } 0 < x < L_1, \\ ax + d & \text{if } L_1 < x < L_1 + L_2. \end{cases}$
(a)

From (3 and (6), we have
$$0 = U(0) = b$$
 and $T = U(L_1+L_2) = c(L_1+L_2)+d$,
Au
 $U(x) = \begin{cases} ax & \text{if } 0 < x < L_1, \\ c(x-L_1-L_2) + T & \text{if } L_1 < x < L_1+L_2. \end{cases}$

Using (3) and (1) yields

$$aL_1 = -cL_2 + T$$
 and $K_1 a = K_2 c$. 42% to here

$$c = \frac{K_{1}T}{K_{1}L_{2} + K_{2}L_{1}}$$
, $a = \frac{K_{2}T}{K_{1}L_{2} + K_{2}L_{1}}$. 56% to here.

I hat is, the equilibrium temperature distribution in the

composite red is:

$$U(\mathbf{x}) = \begin{cases} \frac{\mathbf{k}_{1}T\mathbf{x}}{\mathbf{k}_{1}\mathbf{L}_{2}+\mathbf{k}_{2}\mathbf{L}_{1}} & \forall \mathbf{0} \leq \mathbf{x} \leq \mathbf{L}_{1}, \\ \frac{\mathbf{k}_{1}T\left(\mathbf{x}-\mathbf{L}_{1}-\mathbf{L}_{2}\right)}{\mathbf{k}_{1}\mathbf{L}_{2}+\mathbf{k}_{2}\mathbf{L}_{1}} + T & \text{if } \mathbf{L}_{1} \leq \mathbf{x} \leq \mathbf{L}_{1}+\mathbf{L}_{2}. \end{cases}$$
(b) Dividing the top and the bottom of the ratios by cp in the supression for $U(\mathbf{x})$ in part (c), and rating $\mathbf{k} = \frac{\mathbf{K}_{1}}{cp}$ and $\mathbf{k}_{2} = \frac{\mathbf{K}_{2}}{cp}$
gives
$$U(\mathbf{x}) = \begin{cases} \frac{\mathbf{k}_{1}T\mathbf{x}}{\mathbf{k}_{1}\mathbf{L}_{2}+\mathbf{k}_{2}\mathbf{L}_{1}} & \text{if } \mathbf{0} \leq \mathbf{x} \leq \mathbf{L}_{1}, \\ 10\% \text{ taken} \\ \frac{\mathbf{k}_{1}T\left(\mathbf{x}-\mathbf{L}_{1}-\mathbf{L}_{2}\right)}{\mathbf{k}_{1}\mathbf{L}_{2}+\mathbf{k}_{2}\mathbf{L}_{1}} + T & \text{if } \mathbf{L}_{1} \leq \mathbf{x} \leq \mathbf{L}_{1}+\mathbf{L}_{2}. \end{cases}$$

$$\text{Induces } \mathbf{k}_{1}=\mathbf{2}, \ \mathbf{k}_{2}=\mathbf{1}, \ \mathbf{L}_{1}=\mathbf{3}, \ \mathbf{L}_{2}=\mathbf{2}, \ \text{and} \ T=\mathbf{10} \text{ yieldes}$$

$$U(\mathbf{x}) = \begin{cases} \frac{10}{7}\mathbf{x} & \text{if } \mathbf{0} \leq \mathbf{x} \leq \mathbf{3}, \\ \frac{20}{7}(\mathbf{x}-\mathbf{5})+\mathbf{10} & \text{if } \mathbf{3} \leq \mathbf{x} \leq \mathbf{5}. \end{cases}$$

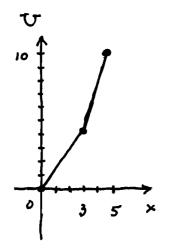
(b) Dividing the top and the bottom of the ratios by
$$c\rho$$
 in the expression for $U(r)$ in part (a), and using $k_1 = \frac{K_1}{c\rho}$ and $k_2 = \frac{K_2}{c\rho}$ gives

$$U(x) = \begin{cases} \frac{k_{z}Tx}{k_{i}L_{z}+k_{z}L_{1}} & i \\ \frac{k_{i}T(x-L_{i}-L_{z})}{k_{i}L_{z}+k_{z}L_{1}} & j \\ \frac{k_{i}T(x-L_{i}-L_{z})}{k_{i}L_{z}+k_{z}L_{1}} + T & i \\ \frac{k_{i}T(x-L_{i}-L_{z})}{k_{i}L_{z}+k_{z}L_{1}} & j \\ \frac{k_{i}L_{z}+k_{z}L_{1}}{k_{i}L_{z}+k_{z}L_{1}} & j \\ \frac{k_{i}L_{z}+k_{z}L_{1}}{k_{i}L_{1}} & j \\ \frac{k_{i}L_{z}+k_{$$

Setting
$$k_1 = 2$$
, $k_2 = 1$, $L_1 = 3$, $L_2 = 2$, and $T = 10$ yields

$$U(x) = \begin{cases} \frac{10}{7}x & \text{if } 0 \le x \le 3, \\ \\ \frac{20}{7}(x-5) + 10 & \text{if } 3 \le x \le 5. \end{cases}$$

I he graph of this temperature distribution as a function of x is :



100% to here

#4, g. 27.

$$\begin{cases}
\Delta u \stackrel{\bigcirc}{=} f(x,y,=) \quad in \quad D, \\
\frac{\partial u}{\partial n} \stackrel{@}{=} 0 \quad on \quad \partial D.
\end{cases}$$

. .

2070 (a) Let
$$\mu(x_{i}y_{i},\overline{z})$$
 be a solution to $0-(\underline{a})$. If C is any
constant and $\gamma = \mu(x_{i}y_{i},\overline{z}) + C$ then $\Delta(v) = \Delta u$ and $\frac{\partial v}{\partial n} = \frac{\partial u}{\partial n}$
po v also solves $0-(\underline{z})$.

48% (b) Let
$$u(x,y,z)$$
 be a solution to $O-\overline{O}$. Then
by (2) definition of $\frac{\partial u}{\partial n}$ Divergence Theorem (see p. 393)
 $0 = \iint OdS = \iint \frac{\partial u}{\partial n} dS = \iint \nabla u \cdot \vec{n} dS = \iiint \nabla \cdot (\nabla u) dV = \iiint \Delta u dV$ 30%
 $\partial D \qquad D \qquad D$
 $D \qquad D \qquad D$
 $D \qquad D \qquad D$
 $\int \int \int f(x,y,z) dV$.
by (1) $D \qquad 40\%$ to here

Therefore
$$\iiint f(x,y,z) dxdydz = 0$$
 is a recensory condition for $@-@$ to
have a solution.

40%. (c) Let us consider D-E as modeling the steady-state
temperature distribution
$$u(x,y,z)$$
 at position (x,y,z) in D. The
presence of f in D indicates sources (+) and/or sinkes (-) of
heat energy within the material occupying D. The condition @

corresponde to an insulated boundary of D. That is, no heat energy flows across DD so the system in D is "isolated "on "closed".

The result of part (a) means that, according to the model $(\mathbf{O} - (\mathbf{O}))$, there is no such thing as an "absolute" temperature at position (x_1, y, z) in D. He are free to arbitrarily assign a particular temperature at a particular point in D, and all temperatures at other points are then measured in reference to this "standad" temperature . (Of course, the model $(\mathbf{O} - (\mathbf{O}))$ for steady-state temperatures was derived using the assumptions of continuum mechanics - Quantum mechanical effects leading to an absolute temperature are not incorporated in this model.)

The result of part (b) means that in order for solutions u = u(x, y, z) to exist for the steady-state temperature distribution problem (D-3), the average value $\frac{1}{vol(D)} \iiint f(x, y, z) dV$

of the source/sink term of must be zero, so that the total heat energy of the closed system in D is conserved.

28%

26%