Mathematics 325 Homework Assignment 5

Due Date:
Name:

Consider the partial differential equation

$$u_{xx} - 3u_{xt} - 4u_{tt} = 0.$$

- (a) Classify the order and type (linear, nonlinear, parabolic, etc.) of (*).
- (b) Find the general solution of (*) in the xt plane, if possible.
- (c) Find the solution of (*) that satisfies

$$u(x,0) = x^3$$
 and $u_t(x,0) = -3x^2$

for $-\infty < x < \infty$.

$$u_{xx} - 3u_{xt} - 4u_{tt} = 0$$

linear homogeneous

10% (4)
$$B^2-4AC = (-3)^2-4(1)(-4) = 25$$

hyperbolic second-order

60% (b)
$$\left(\frac{\partial}{\partial x} - 4\frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial t}\right)u = 0$$
 15% to here

Let $\begin{cases} \vec{z} = +4x + t \end{cases}$. Then $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial \vec{z}} \frac{\partial \vec{z}}{\partial x} + \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial x} = 4 \frac{\partial v}{\partial \xi} + \frac{\partial v}{\partial \eta}$, $\eta = x - t$ 30% by here.

i.e. $\frac{\partial}{\partial x} = \frac{42}{33} + \frac{\partial}{\partial \eta}$. Similarly $\frac{\partial}{\partial t} = \frac{\partial}{\partial z} - \frac{\partial}{\partial \eta}$. Therefore

$$\frac{\partial}{\partial x} - 4 \frac{\partial}{\partial t} = 4 \frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} - 4 \left(\frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} \right) = 5 \frac{\partial}{\partial \eta} ,$$

$$\frac{\partial}{\partial x} + \frac{\partial}{\partial t} = 4 \frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} + \frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} = 5 \frac{\partial}{\partial \xi} .$$

Thus, the pde is equivalent to $(5\frac{\partial}{\partial \eta})(5\frac{\partial}{\partial \xi})u = 0 \Rightarrow \frac{\partial}{\partial \eta}(\frac{\partial u}{\partial \xi}) = 0$.

The general solution is $u = f(\xi) + g(\eta)$, i.e. u(x,t) = f(4x+t) + g(x-t) where f and g are arbitrary C^2 -functions of a single real variable. Go to here

30% (c) $x^3 = u(x,0) = f(4x) + g(x) \Rightarrow 3x^2 = 4f'(4x) + g(x)$ (1) $u_t(x,t) = f'(4x+t) - g'(x-t) \Rightarrow -3x^2 = u(x,0) = f'(4x) - g'(x)$ (2) Adding equations (1) and (2) gives $0 = 5f'(4x) \Rightarrow f'(3) = 0 \Rightarrow f(3) = f(3) =$

30% blace