Mathematics 325

Homework Assignment 5

Due Date:

\qquad
Name: \qquad
Consider the partial differential equation
(*)

$$
u_{x x}-3 u_{x t}-4 u_{t y}=0 .
$$

(a) Classify the order and type (linear, nonlinear, parabolic, etc.) of (*).
(b) Find the general solution of $\left({ }^{*}\right)$ in the $x t$ - plane, if possible.
(c) Find the solution of $\left({ }^{*}\right)$ that satisfies

$$
u(x, 0)=x^{3} \text { and } u_{t}(x, 0)=-3 x^{2}
$$

for $-\infty<x<\infty$.

$$
u_{x x}-3 u_{x t}-4 u_{t t}=0
$$

10% (a) $B^{2}-4 A C=(-3)^{2}-4(1)(-4)=25$
hyperbolic
second-order
60\% (b) $\left(\frac{\partial}{\partial x}-4 \frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial t}\right) u=0$ 15\% to here
Let $\left\{\begin{array}{l}\xi=+4 x+t . \\ \eta=x-t\end{array}\right.$. 0% the nee. \quad Then $\frac{\partial v}{\partial x}=\frac{\partial v}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial z}=4 \frac{\partial v}{\partial \xi}+\frac{\partial v}{\partial \eta}$,
i.e. $\frac{\partial}{\partial x}=4 \frac{\partial}{\partial z}+\frac{\partial}{\partial \eta}$. Similarly $\frac{\partial}{\partial t}=\frac{\partial}{\partial z}-\frac{\partial}{\partial \eta}$. Therefore

$$
\begin{aligned}
& \frac{\partial}{\partial x}-4 \frac{\partial}{\partial t}=4 \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}-4\left(\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta}\right)=5 \frac{\partial}{\partial \eta}, \\
& \frac{\partial}{\partial x}+\frac{\partial}{\partial t}=4 \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}+\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta}=5 \frac{\partial}{\partial \xi} .
\end{aligned}
$$

Thus, the poe is equivalent to $\left(5 \frac{\partial}{\partial \eta}\right)\left(5 \frac{\partial}{\partial \xi}\right) u=0 \Rightarrow \frac{\partial}{\partial \eta}\left(\frac{\partial u}{\partial \xi}\right)=0$.
The general solution is $u=f(y)+g(\eta)$, ie. $u(x, t)=f(4 x+t)+g(x-t)$ where f and g are arbitrary c^{2}-functions of a single real variable.
30% (c)

$$
\begin{align*}
& x^{3}=u(x, 0)=f(4 x)+g(x) \Rightarrow 3 x^{2}=4 f^{\prime}(4 x)+g^{\prime}(x) \tag{1}\\
& u_{t}(x, t)=f^{\prime}(4 x+t)-g^{\prime}(x-t) \Rightarrow-3 x^{2}=u_{t}(x, 0)=f^{\prime}(4 x)-g^{\prime}(x) \tag{2}
\end{align*}
$$

adding equations (1) and (z) gives $0=5 f^{\prime}(4 x) \Rightarrow f^{\prime}(z)=0 \Rightarrow f(z)=c_{1} \ldots$ Substituting this result in equation (1) gives $3 x^{2}=g^{\prime}(x) \Rightarrow g(x)=x^{3}+c_{2}$.
But $x^{3}=f(4 x)+g(x)=c_{1}+x^{3}+c_{2}$ so $c_{1}+c_{2}=0$. Thus

$$
u(x, t)=f(4 x+t)+g(x-t)=c_{1}+(x-t)^{3}+c_{2} \Rightarrow \frac{u(x, t)=(x-t)^{3}}{30 \% \text { ot here. }} .
$$

