> Mathematics 325
> Homework Assignment 6

Due Date:

\qquad
Name: \qquad
Consider the differential equation

$$
\begin{equation*}
u_{t t}-u_{x x}=0 \text { for }-\infty<x<\infty, 0<t<\infty . \tag{*}
\end{equation*}
$$

(a) Solve (*) subject to the initial conditions

$$
u(x, 0)=e^{-x^{2}} \text { and } u_{t}(x, 0)=-2 x e^{-x^{2}} \text { for }-\infty<x<\infty .
$$

(b) Sketch profiles of the solution $u=u(x, t)$ at $t=1,2$, and 3 in order to show that the solution is a wave traveling to the left along the x-axis. What is its speed?
(c) Derive the general nontrivial relation between ϕ and ψ which will produce a solution to $u_{t t}-u_{x x}=0$ in the $x t$-plane satisfying

$$
u(x, 0)=\phi(x) \text { and } u_{t}(x, 0)=\psi(x) \text { for }-\infty<x<\infty
$$

and such that u consists solely of a wave traveling to the left along the x-axis .

$$
u_{t t}-u_{x x}=0 \quad(-\infty<x<\infty, 0<t<\infty)
$$

$40 \%_{0}(a) \quad u(x, 0)=e^{-x^{2}}$ and $u_{t}(x, 0)=-2 x e^{-x^{2}} \quad(-\infty<x<\infty)$.
By d'Alembert,

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}[\varphi(x+t)+\varphi(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} \psi(\xi) d \xi \\
& =\frac{1}{2}\left[e^{-(x+t)^{2}}+e^{-(x-t)^{2}}\right]+\frac{1}{2} \int_{x-t}^{x+t}-2 \xi e^{-\xi^{2}} d \xi \\
& =\frac{1}{2}\left[e^{-(x+t)^{2}}+e^{-(x-t)^{2}}\right]+\left.\frac{1}{2} e^{-\xi^{2}}\right|_{x-t} ^{x+t} \\
& =\frac{1}{2}\left[e^{-(x+t)^{2}}+e^{-(x-t)^{2}}\right]+\frac{1}{2}\left[e^{-(x+t)^{2}}-e^{-(x,-t)^{2}}\right] \\
u(x, t) & \left.=e^{-(x+t)^{2}}\right]
\end{aligned}
$$

20% (b)

The solution is a wave with speed 1 traveling to the left along the x-axis.
(5\%)
40% (c) By d'Alenbert, the solution to the wave initial-mlue problem is

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}[\varphi(x+t)+\varphi(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} \psi(\xi) d \xi \\
& =\frac{1}{2}[\varphi(x+t)+\varphi(x-t)]+\frac{1}{2} \int_{0}^{x+t} \psi(z) d \xi-\frac{1}{2} \int_{0}^{x-t} \psi(\xi) k \xi \\
& =\underbrace{\frac{1}{2} \varphi(x+t)+\frac{1}{2} \int_{0}^{x+t} \psi(\xi) d \xi}_{\begin{array}{c}
\text { wave moving to left } \\
\text { along } x \text {-axis }
\end{array}}+\underbrace{\frac{1}{2} \varphi(x-t)-\frac{1}{2} \int_{0}^{x-t} \psi(\xi) d \xi}_{\text {wave moving to right }} .
\end{aligned}
$$

The portion of $u(x, t)$ that moves to the right along the x-axis must be constant; ie.

$$
\frac{1}{2} \varphi(z)-\frac{1}{2} \int_{0}^{z} \psi(\xi) d \xi=\text { constant }
$$

for all $-\infty<z<\infty$. We can obtain an equivalent relationship between φ and ψ by differentiation:

$$
\begin{gathered}
\frac{1}{2} \phi^{\prime}(z)-\frac{1}{2} \psi(z)=0 \\
\left(\text { 4020 to here) } \quad \Rightarrow \quad \psi(z)=\phi^{\prime}(z) \quad \text { for all }-\infty<z<\infty .\right.
\end{gathered}
$$

