$$
(k=1)
$$

1.(25 pts.) Solve $u_{t}-u_{x x}=0$ in $-\infty<x<\infty, 0<t<\infty$, subject to $u(x, 0)=x^{3}$ for $-\infty<x<\infty$.

Note: You may find useful the following formulas.

4 then $\left.\left.u(x, t)=\int_{-\infty}^{\infty} \frac{e^{-\frac{(x-y)^{2}}{4 t}}}{\sqrt{4 \pi t}} \phi(y) d y=\int_{-\infty}^{\infty} \frac{e^{-\frac{(x-y)^{2}}{4 t}}}{\sqrt{4 \pi t}} y^{3} d y\right\}_{6}\right\}$ Len $p=\frac{y-x}{\sqrt{4 t}} d p=\frac{d y}{\sqrt{4 t}} 8$

$$
\int_{-\infty}^{\infty} p e^{-p^{2}} d p=0=\int_{-\infty}^{\infty} p^{3} e^{-p^{2}} d p, 2 \int_{-\infty}^{\infty} p^{2} e^{-p^{2}} d p=\sqrt{\pi}=\int_{-\infty}^{\infty} e^{-p^{2}} d p .
$$

$$
=\int_{-\infty}^{\infty} \frac{e^{-p^{2}}}{\sqrt{\pi}}(x+p \sqrt{4 t})^{3} d p
$$

$$
\begin{aligned}
& 121 \\
& 12 \\
& 1=21
\end{aligned}
$$

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} .
$$

$=\int_{-\infty}^{\infty} \frac{e^{-p^{2}}}{\sqrt{\pi}}\left(x^{3}+3 x^{2} p \sqrt{4 t}+3 x p^{2}(4 t)+p^{3} 4 t \sqrt{4 t}\right) d p$

$$
=x^{3} \int_{-\infty}^{\infty} e^{-p^{2}} \frac{d p}{\sqrt{\pi}}+3 x^{2} \sqrt{4 t} \int_{-\infty}^{\infty} p e^{-p^{2}} \frac{d p}{\sqrt{\pi}}+12 x t \int_{-\infty}^{\infty} e^{-p^{2}} p^{2} \frac{d p}{\sqrt{\pi}}+8 t \sqrt{t} \int_{-\infty}^{\infty} e^{p^{2}} p^{3} \frac{d p}{\sqrt{\pi}}
$$

$$
u(x, t)=x^{3}+6 x t
$$

Because $\varphi(x)=x^{3}$ is unbounded, we ${ }^{25}$ need to check our answer.

$$
\begin{aligned}
& u_{t}=6 x, \quad u_{x x}=6 x, \quad \therefore u_{t}-u_{x x}=0 \\
& u(x, 0)=x^{3}+6 x(0)=x^{3} V
\end{aligned}
$$

2.(25 pts.) (a) State without proof the weak maximum principle for solutions to the diffusion equation.
(b) Use part (a) to show that there is at most one solution to

$$
u_{t}-u_{x x}=x(1-x) \cos ^{2}(\pi t) \text { in } 0<x<1,0<t \leq 5,
$$

subject to the boundary conditions
$u(0, t)=t$ and $u(1, t)=4 \cos (2 \pi t)-3 \sin (2 \pi t)$ if $0 \leq t \leq 5$, and the initial condition

$$
u(x, 0)=4(1-x)^{4} \text { if } 0 \leq x \leq 1
$$

12 (a) Let $u=u(x, t)$ be a solution to $u_{t}-k u_{x_{x}}=0$ in $R: 0<x<L, 0<t \leq T$ and let u he continuous on $\bar{R}: 0 \leq x \leq L, 0 \leq t \leq T$. Thew the maximum value of u on \bar{R} is attained cither on the initial wall (ice $x=0$) or on the lateral wall (is. $x=0$ or $x=L$).

13 (b) Suppose that $u=u_{1}(x, t)$ and $u=u_{2}(x, t)$ are two solutions of the problems in part (b). Then $v(x, t)=u_{1}(x, t)-u_{2}(x, t)$ is a solution of $v_{t}-v_{x x}=0$ in $R: 0<x<1,0<t \leq 5$ and satisfies $v(0, t)=0=v(1, t)$ if $0 \leq t \leq 5$ and $v(x, 0)=0$ if $0 \leq x \leq 1$. Therefor the maximum of v on \bar{R} is zero since v varices on the intial and lateral walls. I.e. $v(x, t) \leq 0$ for all (x, t) in \bar{R} so $u_{1}(x, t) \leq u_{2}(x, t)$ or \bar{R}. A similar argument with $u_{2}(x, t)-u_{1}(x, t)$ in place of $u_{1}(x, t)-u_{2}(x, t)$ shoos that $u_{2}(x, t) \leqslant u_{1}(x, t)$ on \bar{R}. It folios) that $u_{1}(x, t)=u_{2}(x, t)$ on \bar{R}. That is, there is at most one solution to the problem in port (b).
3. (25 pts .) Use Fourier transform methods to derive a formula for the solution to
$u_{t}-c^{2} u_{x t}=0$ in $-\infty<x<\infty,-\infty<t<\infty$,
subject to

$$
u(x, 0)=\phi(x) \text { and } u_{t}(x, 0)=\psi(x) \text { if }-\infty<x<\infty .
$$

BONUS: For 10 extra points, instead solve the inhomogeneous equation $u_{n}-c^{2} u_{r x}=f(x, t)$ in the $x t$-plane subject to the initial conditions above.
The take the transform of $u_{t t}-c^{2} u_{x x}=f(x, t)$ with respect to x, yielding

$$
f\left(u_{t t}-c^{2} u_{x x}\right)(\xi)=f(f(x, t))(3) \Rightarrow \frac{\partial^{2} f(u)(3)-c^{2}(i 3)}{\partial t^{2}} f(u)(3)=\hat{f}(3, t)
$$

$\Rightarrow \frac{\partial^{2} f(u)(s)}{\partial t^{2}}+c^{2} \xi^{2} f(u)(s)=\hat{f}(\xi, t)$. The general solution of this inhomogeneous $2^{n d}$ ordu
+1 ODE in the rasiablet (with parameter $\xi)$ is $F(u)(\xi)=\hat{u}_{h}(1, t)+\hat{u}_{p}(\xi, t)$ where
$\hat{u}_{h}(3, t)=c_{1}(\xi) \cos (3 t)+c_{2}(\xi) \sin (c 3 t)$ is the general ablution of the associated homogenesis equation $\frac{\partial^{2} f(x)(s)}{\partial t^{2}}+c^{2} \xi^{2} f(u)(s)=0$ ard a particular solution of the inhomageneans equation is give by urriction of parameters): $\hat{u}_{p}(\xi, t)=v(3, t) \cos (e s t)+w(\xi, t) \sin (c s t)$ with $v(\xi, t)=\int_{0}^{t} \frac{\hat{f}(\xi, \tau) \sin (c \xi r)}{c_{3}} d \tau$ and $w(\xi, t)=\int_{0}^{t} \frac{\hat{f}(s, r) \cos (c s \tau)}{c \xi} d \tau$.
 simplifying gives

$$
\hat{+5} \quad \hat{u_{p}}(B, t)=\int_{0}^{t} \frac{\hat{f}(3, r)}{c \xi}\left[\cos (c \xi T s \sin (c \xi t)-\sin (c s \tau) \cos (c \xi t)] d r=\int_{0}^{t} \frac{\hat{f}(1, r)}{c \xi} \sin (c \xi(t-r)) d \gamma\right.
$$

and consequently,

$$
\mathcal{F}(u)(\xi)=c_{1}(\xi) \cos (c \xi t)+c_{2}(\xi) \sin (c \xi t)+\int_{0}^{t} \frac{\hat{f}(\xi, \tau)}{c_{\xi}} \sin (c \xi(t-\tau)) d \tau .
$$

Applying the initial conditions glee

$$
d(s)=\left.f(u)(x)\right|_{t=0}=f(u(x, 0))(3)=f(\varphi)(s) \text { and } \quad \operatorname{cyc}(\xi)=\left.f\left(u_{t}\right)(())\right|_{t=0}=f(\psi)(())
$$

$$
f(n)(s)=f(\varphi)(s) \cos (c \xi t)+\frac{f(\psi)(s)}{c \xi} \sin (c s t)+\int_{0}^{t} \frac{\hat{f}(s, \tau)}{c \xi} \sin (c \xi(t-\tau)) d \tau \text {. }
$$

next we use the identities

$$
\cos (\operatorname{cs} t)=\frac{1}{2} e^{i c s t}+\frac{1}{2} e^{-i c s t} \text { and } \sin (\operatorname{cst} t)=\frac{1}{2 i} e^{i c s t}-\frac{1}{2 i} e^{-i c s t}
$$

and the fourier tranaforion formulas

$$
f(g(x-a))(\xi)=\hat{g}(\xi) e^{-i \xi a} \text { and } f\left(\int_{-\infty}^{x} g(s) d s\right)(x)=\frac{\hat{g}(\xi)}{i \xi}
$$

(see the homewate exercises an Fourier thampfomes) to wite

$$
\begin{aligned}
& \left.f(u)(\xi)=\frac{1}{2} f(\varphi)(\xi) e^{i c \xi t}+\frac{1}{2} f(\varphi)(3) e^{-i c \xi t}+\frac{1}{2 c} f\left(\int_{-\infty}^{x} \psi(s) d s\right)(z) e^{i c \xi t} e^{-i c s(t-\tau)}\right] \\
& -\frac{1}{2 c} f\left(\int_{-\infty}^{x} \psi(s) d s\right)(\xi) e^{-i c \xi t}+\int_{0}^{t}\left[\frac{1}{2 c} f\left(\int_{-\infty}^{x} f(s, r) d s\right)(z) e^{i c(t-r)}-\frac{1}{2 c} f\left(\int_{-\infty}^{x} f(s, r) d s\right)\right) \\
& =\frac{1}{2} f(\varphi(x+c t))(\beta)+\frac{1}{2} f(\varphi(x-c t))(3)+\frac{1}{2 c} f\left(\int_{-\infty}^{x+c t} \psi(s) d s\right)(3) \\
& -\frac{1}{2 c} f\left(\int_{-\infty}^{x-c t} \psi(s) d\right)\left((3)+\int_{0}^{t}\left[\frac{1}{2 c} f\left(\int_{-\infty}^{x+(t-r)} f(s, r) d s\right)(3)-\frac{1}{2 c} f\left(\int_{-\infty}^{x-c(t-r)} f(s, r) d s\right)(s)\right] d r\right. \\
& =f\left(\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]\right)(\xi)+\mathcal{F}\left(\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s\right)(\xi) \\
& +\int_{0}^{t} f\left(\frac{1}{2 c} \int_{x-d t-\tau)}^{x+c(t-\tau)} f(s, \tau) d s\right)(s) d \tau .
\end{aligned}
$$

Interchanging the order of integration in the last term and using linearity of the fourier transform yields

$$
+10 \quad f(u)(s)=f\left(\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s+\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-\tau)}^{x+c(t-\tau)} f(s, \tau) d s d \tau\right)(3)
$$

Applying the inversion formula leads to

$$
u(x, t)=\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int^{x+c t} \psi(s) d s+\frac{1}{2 c} \int^{t} \int^{x+c(t-r)} f(s, \tau) d s d \tau .
$$

4. (25 pts .) Consider the partial differential equation $u_{1}-u_{\mathrm{xx}}=0$ in $0<x<1,0<t<10$, subject to the boundary conditions $\left.u_{x}{ }^{0} \mathrm{c}^{(t)}\right)=0=u(1, t)$ if $0 \leq t \leq 10$ and the initial condition

$$
u(x, 0)=3 \cos \left(\frac{\pi x}{2}\right)-2 \cos \left(\frac{5 \pi x}{2}\right) \text { if } 0 \leq x \leq 1
$$

15 (a) Use the method of separation of variables and show ALL DETAILS of the calculation of the eigenvalues and eigenfunctions for this problem. (Note well that the boundary condition at the left endpoint is a Neumann condition and that at the right endpoint is a Dirichlet condition.)
10 (b) Write a formula for the solution $u=u(x, t)$ to this problem.
BONUS: For 10 extra points, show that there is at most one solution to this problem.
(a) Consider nontrivial solutions to the homogeneous portion of this problem of the form $u(x, t)=\Psi(x) T(t)$. Substituting this in the PDE gives $\Psi^{\prime}(x) T^{\prime}(t)-Z^{\prime \prime}(x) T(t)=0$
$\Rightarrow-\frac{T^{\prime}(t)}{T(t)}=-\frac{\mathbb{Z}^{\prime \prime}(x)}{X(x)}=$ constant $=\lambda$. Substituting the fractional form for u in the boundary conditions produces) $\left\{\begin{array}{l}0=u_{x}(0, t)=\bar{X}^{\prime}(0) T(t) \\ 0=u(1, t)=\bar{X}(1) T(t)\end{array}\right\}$ for all $0 \leq t \leq 10$. Since u is nontrivial, it followothat $X^{\prime}(0)=0=\bar{X}(1)$. Therefore we have the coupled aysteno

$$
\left\{\begin{array}{l}
\bar{X}^{\prime \prime}(x)+\lambda \bar{X}(x)=0, \quad X^{\prime}(0)=0, \quad Z(1)=0, \\
T^{\prime}(t)+\lambda T(t)=0 .
\end{array}\right.
$$

The assume that the rigenomen are real.
Case 1: $\lambda=0$. $\quad X^{\prime \prime}(x)=0 \Rightarrow Z^{\prime}(x)=c_{1}$ and $X(x)=c_{1} x+c_{2}$. Then $0=X^{\prime}(0)=c$, and $0=X(1)=P_{1}^{(1)}+c_{2}=c_{2}$. There ale only trivial solution in this case; i.e. $\lambda=0$ is not an eigenvalue.
Cue 2: $\lambda<0$, any $\lambda=-\alpha^{2}$ where $\alpha>0 . \mathbb{X}^{\prime \prime}(x)-\alpha^{2} X(x)=0 \Rightarrow \bar{I}(x)=\operatorname{cocoh}(\alpha x)+c \operatorname{cinh}$ and $Z^{\prime}(x)=\alpha c_{1} \sinh (\alpha x)+\alpha c_{2} \cosh (\alpha x)$. Then $0=X^{\prime}(0)=\alpha c_{2} \Rightarrow c_{2}=0$ and $0=X(1)=c_{1} \cosh (\alpha)+c_{2}^{0} \operatorname{minh}(\alpha)=c_{1} \frac{\text { positive }}{\cosh (\alpha)} \Rightarrow c_{1}=0$. There are only trivial rolutional in this case as well, so there are no negative eiganalues.
Case 3: $\lambda>0$, say $\lambda=\alpha^{2}$ where $\alpha>0 . \bar{X}^{\prime \prime}(x)+\alpha^{2} \bar{X}(x)=0 \Rightarrow Z(x)=c \cos (\alpha x)+c_{2} \sin (\alpha x)$ and $Z^{\prime}(x)=-\alpha c_{1} \sin (\alpha x)+\alpha c_{2} \cos (\alpha x)$. Thew $0=Z^{\prime}(0)=\alpha c_{2} \Rightarrow c_{2}=0$ and $0=Z(1)=$ $c_{1} \cos (\alpha)+\not A_{2}^{0} \sin (\alpha)=c, \cos (\alpha)$. For mantriviad solutions, we must have $\cos (\alpha)=0$ and hence $\alpha=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots$ Therefore:
eigenvalues: $\lambda_{n}=\alpha_{n}^{2}=\left(\frac{(2 n-1) \pi}{2}\right)^{2} \quad(n=1,2,3, \ldots)$
(b) J he t-equation in $T_{-\left(\frac{(2 n-1) \pi}{2}\right)^{2} t} T_{n}^{\prime}(t)+\lambda_{n} T_{n}(t)=0 \Rightarrow T_{n}^{\prime}(t)+\left(\frac{(2 n-1) \pi}{2}\right)^{2} T_{n}(t)=0$

$$
\Rightarrow T_{n}(t)=e
$$

(up to a constant factor) for $n=1,2,3, \ldots$
Therefore $u_{n}(x, t)=X_{n}(x) T_{n}(t)=\cos \left(\frac{(2 n-1) \pi x}{2}\right) e^{-\left(\frac{\left.(2 n-1) x^{2}\right)^{2} t}{}\right.}(n=1,2,3, \ldots)$ solves the homogeneous potion of the problem. The mporpsition principle implies that

$$
u(x, t)=\sum_{n=1}^{N} c_{n} \cos \left(\frac{(2 n-1) \pi x}{2}\right) e^{-(}
$$

-($\left(\frac{2 n-1)}{2}\right)^{2} t$
solves the homogeneous part of the problem fer each integer $N \geq 1$ and all cunctanto c_{1}, \ldots, c_{N}. He want

$$
3 \cos \left(\frac{\pi x}{2}\right)-2 \cos \left(\frac{5 \pi x}{2}\right)=u(x, 0)=\sum_{n=1}^{N} c_{N} \cos \left(\frac{(2 n-1) \pi x}{2}\right)
$$

for all $0 \leq x \leq 1$. By inspection, we may take $N=3$ and $c_{1}=3, c_{2}=0, c_{3}=-2$.
Comequantly, a solution to the entire posblanu is

$$
u(x, t)=3 \cos \left(\frac{\pi x}{2}\right) e^{-\frac{\pi^{2} t}{4}}-2 \cos \left(\frac{5 \pi x}{2}\right) e^{-\frac{25 \pi^{2} t}{4}}
$$

BoNUS. Suppose $u=v(x, t)$ were another solution to the problem i and consider $2 \quad w(x, t)=u(x, t)-v(x, t)$. Thew w solves

$$
\left\{\begin{array}{l}
w_{t}-w_{x x}=0 \quad \text { in } R: 0<x<1,0<t \leq 10, \\
w_{x}(0, t)=0=w(1, t) \text { if } 0 \leq t \leq 10, \\
w(x, 0)=0 \text { if } 0 \leq x \leq 1 .
\end{array}\right.
$$

The energy of the solution w at time $t \geqslant 0$ is given ty

$$
E(t)=\int_{0}^{1} w^{2}(x, t) d x
$$

(cont.)

$$
\begin{aligned}
& \text { so } \frac{d E}{d t}=\frac{d}{d t} \int_{0}^{1} w^{2}(x, t) d x=\int_{0}^{1} \frac{\partial}{\partial t}\left(w^{2}(x, t)\right) d x=\int_{0}^{1} 2 w(x, t) w_{t}(x, t) d x= \\
& \int_{0}^{1} 2 \overbrace{w(x, t)}^{v} \overbrace{w_{x x}(x, t) d x}^{d V}=\left.2 w(x, t) w_{x}(x, t)\right|_{x=0} ^{1}-2 \int_{0}^{1} w_{x}^{2}(x, t) d x= \\
& 2 w(1, t) w_{x}^{0}(1, t)-2 w(0, t) w_{x}(0, t)-2 \int_{0}^{1} w_{x}^{2}(x, t) d x=-2 \int_{0}^{1} w_{x}^{2}(x, t) d x \leq 0 .
\end{aligned}
$$

8 That is, the energy is a decreasing function of t in $[0,10]$. Therefore

$$
0 \leq \int_{0}^{1} w^{2}(x, t) d x=E(t) \leq E(0)=\int_{0}^{1} w^{2}(x,) d x=\int_{0}^{1} 0 d x=0 \text { foll all } 0 \leq t \leq 10 \text {, }
$$

so $\int_{0}^{1} w^{2}(x, t) d x \equiv 0$. The vanishing theorem thew implies $w(x, t)=0$ for all $0 \leqslant x \leqslant 1$ and each fixed $t \in[0,1]$. It follows that $v(x, t)=u(x, t)$ for all (x, t) in \bar{R}; is. the solution to the problems is unique.

$$
f(x)
$$

$$
\hat{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \xi x} d x
$$

A. $\begin{cases}1 & \text { if }-b<x<b, \\ 0 & \text { otherwise. }\end{cases}$
B. $\begin{cases}1 & \text { if } c<x<d, \\ 0 & \text { otherwise. }\end{cases}$
C. $\frac{1}{x^{2}+a^{2}} \quad(a>0)$
D. $\begin{cases}x & \text { if } 0<x \leq b, \\ 2 b-x & \text { if } b<x<2 b, \\ 0 & \text { otherwise. }\end{cases}$
E. $\begin{cases}e^{-a x} & \text { if } x>0, \\ 0 & \text { otherwise. }\end{cases}$
($a>0$)
F. $\left\{\begin{array}{cl}e^{a x} & \text { if } b<x<c, \\ 0 & \text { otherwise. }\end{array}\right.$
G. $\begin{cases}e^{\text {iax }} & \text { if }-b<x<b, \\ 0 & \text { otherwise. }\end{cases}$
H. $\begin{cases}e^{i a x} & \text { if } c<x<d, \\ 0 & \text { otherwise. }\end{cases}$
I. $e^{-a x^{2}} \quad(a>0)$.
J. $\frac{\sin (a x)}{x} \quad(a>0)$
$\frac{\sqrt{2} \frac{\sin (b \xi)}{\xi}}{e^{-i c \xi}-e^{-i d \xi}}$
$i \xi \sqrt{2 \pi}$
$\sqrt{\frac{\pi}{2}} \frac{e^{-a|\xi|}}{a}$
$\frac{-1+2 e^{-i b \xi}-e^{-2 i b \xi}}{\xi^{2} \sqrt{2 \pi}}$
$\frac{1}{(a+i \xi) \sqrt{2 \pi}}$
$\frac{e^{(a-i \xi) c}-e^{(a-i \xi) b}}{(a-i \xi) \sqrt{2 \pi}}$
$\sqrt{\frac{2}{\pi}} \frac{\sin (b(\xi-a))}{\xi-a}$
$\frac{i}{\sqrt{2 \pi}} \frac{e^{i c(a-\xi)}-e^{i d(a-\xi)}}{a-\xi}$
$\frac{1}{\sqrt{2 a}} e^{-\xi^{2} /(4 a)}$
$\left\{\begin{array}{cl}0 & \text { if }|\xi| \geq a, \\ \sqrt{\pi / 2} & \text { if }|\xi|<a .\end{array}\right.$

