\qquad
1.(35 pts.) (a) Show that the operator $T=-\frac{d^{2}}{d x^{2}}$ is hermitian on $V=\left\{f \in C^{2}[0,1]: f^{\prime}(0)=0=f(1)\right\}$ equipped with the standard inner product $\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x$.
(b) Find all the eigenvalues and corresponding eigenfunctions of T on V.
(c) Does the set of functions $\left\{\cos \left(\left(n+\frac{1}{2}\right) \pi x\right)\right\}_{n=0}^{\infty}$ form an orthogonal system on $[0,1]$ with the standard inner product? Justify your answer.
(d) Show that the Fourier series of $f(x)=1-x^{2}$ with respect to $\left\{\cos \left(\left(n+\frac{1}{2}\right) \pi x\right)\right\}_{n=0}^{\infty}$ on $[0,1]$ is

$$
\sum_{n=0}^{\infty} \frac{32(-1)^{n} \cos \left(\left(n+\frac{1}{2}\right) \pi x\right)}{\pi^{3}(2 n+1)^{3}}
$$

(e) Write the partial sum consisting of the first two terms of the above Fourier series for f. On the same coordinate axes, sketch the graph of this partial sum and the graph of f.
(f) Assume that for every x in $[0,1], f(x)=1-x^{2}$ is equal to its Fourier series in part (d). Find the sum of $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}$.
+6 (a) Let fard g belong to V. Then

$$
\begin{aligned}
& \langle T f, g\rangle=\int_{0}^{1}-\left.f^{\prime \prime}(x) \overline{g(x)} d x \stackrel{\emptyset}{=}\left[f(x) \overline{g^{\prime}(x)}-f^{\prime}(x) \overline{g(x)}\right]\right|_{x=0} ^{1}-\int_{0}^{1} f(\bar{x}) \overline{g^{\prime \prime}(x)} d x . \\
& \text { But } f(1)=0=\overline{g(1)} \text { and } \overline{g^{\prime}(0)}=0=f^{\prime}(0) \text { so }\langle T f, g\rangle=\langle f, T g\rangle ;
\end{aligned}
$$

that is, T is hermitian on V.
+6 (b) Since $T=-\frac{d^{2}}{d x^{2}}$ is hermitian on V, ale its eigenvalues are neal numbered. br fact, since $-\left.f(x) f^{\prime}(x)\right|_{x=0} ^{\prime}=0$ for all real-valued functions) f in V, all the eigenvalues of T on V are positive, any $\lambda=\beta^{2}$. Then $T f=\lambda f$ on V hecomes $f^{\prime \prime}(x)+\beta^{2} f(x)=0, f^{\prime}(0)=0, f(1)=0$. Then
$f(x)=A \cos (\beta x)+B \sin (\beta x)$ and $f^{\prime}(x)=-\beta A \sin (\beta x)+\beta B \cos (\beta x) . \quad 0=f^{\prime}(0)=\beta B$ $\Rightarrow B=0 . \quad 0=f(1)=A \cos (\beta) \Rightarrow \beta=\beta_{n}=(2 n+1) \frac{\pi}{2}=\left(n+\frac{1}{2}\right) \pi \quad(n=0,1,2, \ldots)$.
Therefore the eigenvalues and eigenfunctions are $\lambda_{n}=\left(n+\frac{1}{2}\right)^{2} \pi^{2}$ and $\frac{\bar{x}_{n}}{n}(x)=\cos \left(\left(n+\frac{1}{2}\right) n\right.$ n
+6 (c) Yes, $\left\{\cos \left(\left(n+\frac{1}{2}\right) \pi x\right)\right\}_{n=0}^{\infty}$ is an orthogonal system on $[0,1]$ because they are eigenfunction of a hermitian operator corresponding to the distinct eigenvalues) $\lambda_{n}=\left(n+\frac{1}{2}\right)^{2} \pi^{2} \quad(n=0,1,2, \ldots)$.
+6 (d) $\left.1-x^{2} \sim \sum_{n=0}^{\infty} c_{n} \cos \left(n+\frac{1}{2}\right) \pi x\right)$ where $c_{n}=\frac{\left\langle 1-x^{2}, \cos \left(\left(n+\frac{1}{2}\right) \pi x\right)\right\rangle^{+1}}{\left.\left\langle\cos \left(n+\frac{1}{2}\right) \pi x, \cos \left(n+\frac{1}{2}\right) \pi x\right)\right\rangle^{+1}}(n=0,1,2$,

$$
\begin{align*}
& \left\langle\cos \left(\left(n+\frac{1}{2}\right) \pi x\right), \cos \left(\left(n+\frac{1}{2}\right) \pi x\right)\right\rangle=\int_{0}^{T} \cos ^{2}\left(\left(n+\frac{1}{2}\right) \pi x\right) d x=\int_{0}^{1}\left[\frac{1}{2}+\frac{1}{2} \cos \left(2\left(n+\frac{1}{2}\right) \pi x\right)\right] d x= \\
& {\left.\left[\frac{x}{2}+\frac{1}{2(2 n+1) \pi} \sin ((2 n+1) \pi x)\right]\right|_{0} ^{1}=\frac{1}{2} .^{+1}} \\
& \left\langle 1-x^{2}, \cos \left(\left(n+\frac{1}{2}\right) \pi x\right)\right\rangle=\int_{0}^{1} \int_{0}^{0}\left(1-x^{2}\right) \frac{d v^{2}}{\left(v^{2}\left(n+\frac{1}{2}\right) \pi x\right)} d x=\left.\frac{\left(1-x^{2}\right) \min \left(\left(n+\frac{1}{2}\right) \pi x\right)}{\left(n+\frac{1}{2}\right) \pi}\right|_{0} ^{1}-\int_{0}^{1} \overbrace{0}^{(-2 x)} \frac{d y}{\left(n+\frac{1}{2}\right) \pi} \frac{\left.\sin \left(n+\frac{1}{2}\right) \pi x\right)}{1} d \\
& =\left.\frac{2 x\left(-\cos \left(\left(n+\frac{1}{2}\right) \pi x\right)\right)}{\left(-n+\frac{1}{2}\right)^{2} \pi^{2}}\right|_{0} ^{1}-\int_{0}^{1} \frac{-\cos \left(\left(n+\frac{1}{2}\right) \pi x\right)}{\left(n+\frac{1}{2}\right)^{2} \pi^{2}} 2 d x=\left.\frac{\left.2 \sin \left(n+\frac{1}{2}\right) \pi x\right)}{\left(n+\frac{1}{2}\right)^{3} \pi^{3}}\right|_{0} ^{1}=\frac{2(-1)^{n}}{\left(n+\frac{1}{2}\right)^{3} \pi^{3}} \\
& \therefore c_{n}=2 \cdot \frac{2(-1)^{n}}{\left[\frac{1}{2}(2 n+1)\right]^{3} \pi^{3}}=\frac{32(-1)^{n}}{(2 n+1)^{3} \pi^{3}} \tag{array}
\end{align*}
$$ are nearly indistinguishable on $[0, i$,

$+6(f)$ Assume $1-x^{2}=\sum_{n=0}^{\infty} \frac{32(-1)^{n} c r\left(\left(n+\frac{1}{2}\right) \pi x\right)}{\pi^{3}(2 n+1)^{3}}$ for all $0 \leq x \leq 1$. Set $x=0$ to get $1=\sum_{n=0}^{\infty} \frac{32(-1)^{n}}{\pi^{3}(2 n+1)^{3}}$ so $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}=\frac{\pi^{3}}{32}$.
2.(35 pts.) Find a solution to

$$
u_{t t}-u_{x x}=0 \text { if } 0<x<1,0<t<\infty,
$$

which satisfies

$$
u_{x}(0, t) \stackrel{(2)}{=} \stackrel{(3)}{=} u(1, t) \text { if } t \geq 0
$$

and
$u(x, 0) \stackrel{(5)}{=} 1-x^{2}, u_{t}(x, 0) \stackrel{\oplus}{=} 0$ if $0 \leq x \leq 1$.
(Hint: You may find the results of problem 1 useful.)
Bonus (15 pts .): Show that the solution to the problem above is unique.
We use separation of variables. Ire seek nontrivial solutions to (1)-(2)-(3)-(4) of the form $u(x, t)=\Psi(x) T(t)$. Substituting this form into (1)-(2)-(3) $(\rightarrow$ yields

$$
\left\{\begin{array}{l}
Z^{\prime \prime}(x)+\lambda Z(x)=0, \bar{Z}^{\prime}(0)=0=\mathbb{Z}(1), \\
T^{\prime \prime}(t)+\lambda T(t)=0, \quad T^{\prime}(0)=0 .
\end{array} \leftarrow\right. \text { Eigenvalue Problem }
$$

12 den
to here.
By \#1, the rigenoralues and eigenfunctions are $\lambda_{n}=\left(n+\frac{1}{2}\right)^{2} \pi^{2}$ and $\bar{X}_{n}(x)=\operatorname{cr}\left(\left(n+\frac{1}{2}\right) \pi x\right)$ for $n=0,1,2, \ldots$ The solution to the t-problem corresponding to $\lambda=\lambda_{n}$ is (up to
${ }_{\text {to }}^{18}$ here a constant factor) $T_{n}(t)=\cos \left(\left(n+\frac{1}{2}\right) \pi t\right)$. Therefore $u(x, t)=\sum_{n=0}^{\infty} c_{n} \cos \left(n+\frac{1}{2+1 s}+\frac{1}{2} x x\right) \cos \left(n+\frac{1}{2}\right) \pi x$ is a formal solution to (1)-(2)-(3)-(4). He want to choose the coefficients to ratify (5):

$$
\left.1-x^{2}=u(x, 0)=\sum_{n=0}^{\infty} c_{n} \cos \left(n+\frac{1}{2}\right) \pi x\right) \quad \text { for all } 0 \leq x \leq 1 \text {. }
$$

so pts.
to here. By $\# 1, \quad c_{n}=\frac{32(-1)^{n}}{\pi^{3}(2 n+1)^{3}}$ for $n=0,1,2, \ldots$ Thus the solution to (1)-(2)-(3)-(4)(5) is
$35,{ }^{2}$.
to here.

$$
u(x, t)=\sum_{n=0}^{\infty} \frac{32(-1)^{n} \cos \left(\left(n+\frac{1}{2}\right) \pi x\right) \cos \left(\left(n+\frac{1}{2}\right) \pi t\right)}{\pi^{3}(2 n+1)^{3}} .
$$

Bonus : The use energy methods to show that the solution is unique. suppose there were another solution $u=v(x, t)$ to the problem. Then
$\begin{aligned} & \text { sots. } \\ & \text { to here. }\end{aligned} \quad w(x, t)=u(x, t)-v(x, t)$ would solve the problem (1)-(2)-(3)-(4) and

$$
\text { (5) } u(x, 0)=0 \text { if } 0 \leq x \leq 1 \text {. }
$$

Consider the energy function of w :
7

$$
E(t)=\int_{0}^{1}\left[\frac{1}{2} w_{t}^{2}(x, t)+\frac{1}{2} w_{x}^{2}(x, t)\right] d x .
$$

Shew

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{0}^{1} \frac{\partial}{\partial t}\left[\frac{1}{2} w_{t}^{2}(x, t)+\frac{1}{2} w_{x}^{2}(x, t)\right] d x \\
& =\int_{0}^{1}\left[w_{t}(x, t) w_{t t}(x, t)+w_{x}(x, t) w_{x t}(x, t)\right] d x \\
& \stackrel{w_{x}}{=} \int_{0}^{1}\left[w_{t}(x, t) w_{x x}(x, t)+w_{x}(x, t) w_{x t}(x, t)\right] d x \\
& =\int_{0}^{1} \frac{\partial}{\partial x}\left[w_{t}(x, t) w_{x}(x, t)\right] d x \\
& =\left.w_{t}(x, t) w_{x}(x, t)\right|_{x=0} ^{1}
\end{aligned}
$$

But (3) and (4) yield $w_{t}(1, t)=0$ and $w_{x}(0, t)=0$ so $\frac{d E}{d t}=0$.
13 Thus E is constant: $E(t)=E(0)=\int_{0}^{1}\left[\frac{1}{2} w_{t}^{2}(x, 0)+\frac{1}{2} w_{x}^{2}(x, 0)\right] d x=0$ by (4) aud (5) for all $t \geq 0$. By the vanishing theorem, $w_{t}(x, t)=0$ and $w_{x}(x, t)=0$ for all $0 \leq x \leq 1$ and each fixed $t>0$. Therefore
is pis. 5 implies $w(x, t)=0$; is. $v(x, t)=u(x, t)$ and the solution
to here. obtained above in unique.
3. $(30 \mathrm{pts}$. $)$ d. \boldsymbol{y} Use the method of separation of variables to find a solution of the beam equation

$$
u_{t}+u_{x x x}=0 \text { if } 0<x<1,0<t<\infty
$$

which satisfies the boundary conditions

$$
\begin{aligned}
& \text { y conditions } \\
& u(0, t) \stackrel{(\mathcal{Q}}{=} u(1, t) \stackrel{(\Theta)}{=} u_{x x}(0, t) \stackrel{\oplus}{=}_{u_{x x}}(1, t) \underline{乌}_{=}^{0} \text { if } t \geq 0,
\end{aligned}
$$

and the initial conditions
$u(x, 0) \stackrel{(9)}{2} 2 \sin (\pi x)-3 \sin (5 \pi x)$ and $u_{t}(x, 0) \stackrel{\text { ® }}{=} 0$ if $0 \leq x \leq 1$.
Te sect nontrivial solutions to (1)-(2)-(3)-(4)(5)-(6) of the form $u(x, t)=\Psi(x) T(t)$. Substituting into the PDE (1) and the BC/ICS (2)-(6) leads to

$$
\left\{\begin{array}{l}
X^{(4)}(x)-\lambda \bar{Z}(x)=0, \quad X(0)=\bar{X}(1)=\bar{Z}^{\prime \prime}(0)=\mathbb{Z}^{\prime \prime}(1)=0, \\
T^{\prime \prime}(t)+\lambda T(t)=0, T^{\prime}(0)=0 .
\end{array}\right.
$$

Eigenvalue Problem

It is easy to check that the operator $\frac{d^{4}}{d x^{4}}$ is hermitian on $V=\left\{f \in c^{4}[0,1]\right.$: $\left.f(0)=f(1)=f^{\prime \prime}(0)=f^{\prime \prime}(1)=0\right\}$, so the eigenvalues of the piohlemiare neal. to fort, if λ is an eigenvalue est $0 \neq \mathbb{X} \in V$ ouch that $X^{(4)}=\lambda \mathbb{X}$. Then two integrations by parts shows that

$$
\begin{aligned}
\lambda\langle\bar{X}, \bar{X}\rangle=\langle\lambda \bar{Z}, \bar{X}\rangle=\left\langle\bar{Z}^{(4)}, \bar{X}\right\rangle=\int_{0}^{1} \bar{Z}^{(4)}(x) \overline{\bar{X}}(x) d x= & \left.\left(\overline{\bar{X}(x)} \bar{\nabla}^{(3)}(x)-\overline{X^{\prime}(x)} \bar{X}^{\prime \prime}(x)\right)\right|_{1} ^{1} \\
& +\int_{0}^{1} \bar{X}^{\prime \prime}(x) \bar{Z}^{\prime \prime}(x) d x .
\end{aligned}
$$

But $\overline{X(0)}=\bar{X}^{\prime \prime}(0)=0$ and $\bar{X}(1)=X^{\prime \prime}(1)=0$ so $\lambda\langle X, \bar{X}\rangle=\left\langle X^{\prime \prime}, X^{\prime \prime}\right\rangle \geqslant 0$.
10 Since $\langle\bar{X}, \bar{Z}\rangle>0$ it follows that $\lambda \geqslant 0$.
Caus $\lambda>0$: Let $\lambda=\alpha^{4}$ where $\alpha>0$. The eigenvalue equation becomes) $X^{(4)}(x)-\alpha^{4} X^{(x)}=0$. $X(x)=e^{r x}$ leads to $r^{4} e^{r x}-\alpha^{4} e^{r x}=0 \Rightarrow r^{4}-\alpha^{4}=0 \Rightarrow\left(r^{2}-\alpha^{2}\right)\left(r^{2}+\alpha^{2}\right)=0$
$\Rightarrow r= \pm \alpha, \pm i \alpha$. Thus $V(x)=\tilde{c}_{1} e^{\alpha x}+\tilde{c}_{2} e^{-\alpha x}+\tilde{c}_{3} e^{i \alpha x}+\tilde{c}_{4} e^{-i \alpha x}$ is the general solution of the $D E$. Equivalently, $X(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x)+c_{3} \cos (\alpha x)+c_{4} \sin (\alpha x)$ and hance $X^{\prime \prime}(x)=\alpha^{2} c_{1} \cosh (\alpha x)+\alpha^{2} c_{2} \operatorname{sinf}(\alpha x)-\alpha^{2} c_{3} \cos (\alpha x)-\alpha^{2} c_{4} \sin (\alpha x)$.
$0=\Sigma(0)=c_{1}+c_{3}$ and $\theta=\Sigma^{\prime \prime}(0)=\alpha^{2} c_{1}-\alpha^{2} c_{3}$ ingle $c_{1}=c_{3}=0$. Then $0=I(1)=c_{2} \sinh (\alpha)+c_{4} \sin (\alpha)$ and $0={\sigma^{\prime \prime}}^{\prime \prime}(1)=\alpha^{2} c_{2} \sinh (\alpha)-\alpha^{2} c_{4} \sin (\alpha)$.
adding these last two equations yields $0=2 \alpha^{2} c_{2} \underbrace{\sinh (\alpha)}_{\text {positive }} \Rightarrow c_{2}=0$. Thew $0=\alpha^{2} c_{4} \sin (\alpha)$ so $\sin (\alpha)=0$ is the eigenvalue condition. Therefore ibpts. $\alpha=\alpha_{n}=n \pi \quad(n=1,2,3, \ldots)$ so $\lambda_{n}=\alpha_{n}^{4}=(n \pi)^{4}$ and $X_{n}(x)=\sin (n \pi x)$ are to here the eigenvalues and eigenfunctions, respectively, where $n=1,2,3, \ldots$
Care $\lambda=0$: The cigquathe equation beconow $X^{(t)}=0$ no $X(x)=c_{1} x^{3}+c_{2} x^{2}+c_{3} x+c_{4}$ and $\Sigma^{\prime \prime}(x)=6 c_{1} x+2 c_{2}$. Then $0=\Sigma(\theta)=c_{4}$ and $0=\Sigma^{\prime \prime}(0)=2 c_{2} \Rightarrow c_{2}=0$.
18
also $0=\bar{Z}(1)=c_{1}+c_{3}$ and $0=\Sigma^{\prime \prime}(1)=b c_{1} \Rightarrow c_{1}=0=c_{3}$. Therefore, there is no nontrivial achution so 3020 is not an eigenvalue.

The audion of the t-equation $T_{n}^{\prime \prime}(t)+\lambda_{n} T_{n}(t)=0 \Leftrightarrow T_{n}^{\prime \prime}(t)+(n \pi)^{4} T_{n}(t)=0$ is $T_{n}(t)=c_{1} \cos \left(n^{2} \pi^{2} t\right)+c_{2} \sin \left(n^{2} \pi^{2} t\right)$. Hance $T_{n}^{\prime}(t)=-n^{2} \pi_{1}^{2} c_{1} \sin \left(n^{2} \pi^{2} t\right)+n^{2} \pi^{2} c_{2} \cos \left(n^{2} \pi^{2} t\right)$ so $0=T_{n}^{\prime}(0)=n^{2} \pi^{2} c_{2} \Rightarrow c_{2}=0$. Thus $T_{n}(t)=\cos \left(n^{2} \pi^{2} t\right)$, up to a content factor. By the anperpoition principle, $u(x, t)=\sum_{n=1}^{N} c_{n} \sin (n \pi x) \cos \left(n^{2} \pi^{2} t\right)$ ravers the homogeneous portion of the problems (1)-(2)-(3)-(4)-(5)-(C) for every integer $N \geqslant 1$. ark all constants c_{1}, \ldots, c_{N}. We want to satisfy the inhomogeneous condition (7) 10 $2 \sin (\pi x)-3 \sin (5 \pi x)=u(x, 0)=\sum_{n=1}^{N} c_{n} \sin (n \pi x)$ for all $0 \leq x \leq 1$. Consequently we may take $N=5 \mathrm{ah} c_{1}=2, c_{5}=-3$, and other $c_{n}=0$. That is, 30 pts . to here.

$$
u(x, t)=2 \sin (\pi x) \cos \left(\pi^{2} t\right)-3 \sin (5 \pi x) \cos \left(25 \pi^{2} t\right)
$$

is a solution of the problem (1)-(2)-(3)-(4)-(5)-(b)-(7).
note: Using the energy function $E(t)=\int_{0}^{1}\left[\frac{1}{2} u_{t}^{2}(x, t)+\frac{1}{2} u_{x x}^{2}(x, t)\right] d x$, it Can he show that this solution is unique.

Math 325
Exam III
Summer 2006

$$
\begin{aligned}
& n=15 \\
& \text { mean }=52.7 \\
& \text { standard deviation }=20.6
\end{aligned}
$$

Distribution of Scores:

Graduate undergrad	Frequency	
A	A	0
B	B	3
C	B	2
C	C	6
F	D	4

