This portion of the 200 point final examination is "open book"; that is, you may freely use your two textbooks for this class: Rudin's *Principles of Mathematical Analysis* and Royden's *Real Analysis*. Work any three problems of your choosing, subject to the constraints that at least one problem must be chosen from Group A and at least one problem must be chosen from Group B. Please **CIRCLE** the numbers of the problems on this portion whose solutions you wish me to grade.

Group A.

4.(33 pts.) Let $\alpha(x)$ denote the fractional part of the real number x. For instance $\alpha(5/4) = .25$, $\alpha(2) = 0$, and $\alpha(\pi) = .1415926...$

- (a) Compute the total variation of α on the interval [1,4].
- (b) Show that the product of two functions of bounded variation on a closed bounded interval is of bounded variation on that interval.
- (c) Let f(x) = 1/x and $\beta(x) = \alpha^2(x)$. Why is f Riemann-Stieltjes integrable with respect to β on the interval [1,4]?
 - (d) Evaluate the Riemann-Stieltjes integral $\int_{1}^{4} f d\beta$.

5.(33 pts.) Let f be the 2π – periodic function defined on a fundamental period by the formula

$$f(x) = x^2 - \frac{\pi^2}{3}$$
 if $-\pi \le x < \pi$.

Show, by rigorous argument, that

$$u(x,t) = \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos(nx) e^{-n^2t}$$

defines a function which solves the diffusion equation $u_t = u_{xx}$ in the region t > 0 of the xt-plane and which satisfies the initial condition u(x,0) = f(x) for $-\infty < x < \infty$.

6.(33 pts.) (a) If $k \in \mathbb{Z}$ and $f(x) = e^{ikx}$, show that

(*)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt.$$

- (b) Show that (*) holds for every complex, continuous, 2π periodic function f on \mathbb{R} .
- (c) Does (*) hold for every complex, bounded, measurable, 2π periodic function f on \mathbb{R} ? Prove your assertion.

Group B.

7.(33 pts.) Let f be a function defined and bounded on the unit square

$$S = \{(x,t): 0 < x < 1, 0 < t < 1\}.$$

Suppose that:

(a) for each fixed t in (0,1) the function $x \mapsto f(x,t)$ is measurable,

(b) at each (x,t) in S, the partial derivative $\frac{\partial f}{\partial t}$ exists, and

(c)
$$\frac{\partial f}{\partial t}$$
 is a bounded function in S.

Show that
$$\frac{d}{dt} \int_{0}^{1} f(x,t) dx = \int_{0}^{1} \frac{\partial f}{\partial t}(x,t) dx$$
.

8.(33 pts.) Let E denote the set of real numbers in the interval [0,1] which possess a decimal expansion which contains no 2's and no 7's. For instance, the numbers 1/2 = .5, and 7/10 = .6999... belong to E, while the numbers 1/4 = .25 = .24999... and $1/\sqrt{2} = .7071...$ do not.

- (a) Compute the Lebesgue measure of E.
- (b) Determine, with proof, whether E is a Borel set.

9.(33 pts.) Let f be a function defined on the interval [0,1] as follows: f(x) = 0 if x is a point of the Cantor ternary set and f(x) = 1/k if x is in one of the complementary intervals of the Cantor set with length 3^{-k} . For example, f(1/3) = 0, f(1/2) = 1, and f(4/5) = 1/2.

- (a) Show that f is a measurable function.
- (b) Evaluate the Lebesgue integral $\int_{0}^{1} f(x)dx$.

(a) - (c) 8 pts. each (a) 4 pts.

a is right-continuous on [1,4] and

$$(4)$$
 (e) since $(1,2)$, $(2,3)$, and $(3,4)$, we have

$$Van(\alpha; 1, 4) = \alpha(2^{-1}) - \alpha(1) + \alpha(2^{-1}) - \alpha(2) + \alpha(3^{-1}) - \alpha(2) + \alpha(3^{-1}) - \alpha(3) + \alpha(4^{-1}) - \alpha(3) + \alpha(4^{-1}) - \alpha(4)$$

$$= 6.$$

(b) Let fand g he in BV[a,b]. For all
$$x \in [a,b]$$
,

$$|f(x)| \leq |f(x) - f(a)| + |f(a)| \leq Var(f; a, x) + |f(a)| \leq Var(f; a, b) + |f(a)|$$

AO
$$M_f = \sup\{|f(x)|: x \in [a,b]\} \in Var(f;a,b) + |f(a)| < \infty$$
.

Similarly, $M_g = \sup \{ |g(x)| : x \in [a,b] \} < \infty$. Let $P = \{ a = x_0 < x_1 < ... < x_n = b \}$ he a partition of [a,b]. Then

$$\sum_{i=1}^{n} |\Delta(fg)_{i}| = \sum_{i=1}^{n} |f(x_{i})g(x_{i}) - f(x_{i-1})g(x_{i-1})|$$

$$\leq \sum_{i=1}^{n} \left(|f(x_i)g(x_i) - f(x_i)g(x_{i-1})| + |f(x_i)g(x_{i-1}) - f(x_{i-1})g(x_{i-1})| \right)$$

$$\leq \sum_{i=1}^{n} M_{f}[g(x_{i})-g(x_{i-1})] + \sum_{i=1}^{n} M_{g}[f(x_{i})-f(x_{i-1})],$$

so taking the supremum over all partitions P of [a,b] yields

$$Var(fg; a,b) \leq M_f Var(g; a,b) + M_f Var(f; a,b) < \infty$$
.

(c)
$$f(x) = \frac{1}{x}$$
 is continuous on [1,4] and $\beta = \alpha^2$ is of bounded

variation on [1,4] (see put (a) b. (b)). Consequently, the Aiemann-Stieltjes integral [† 146 exist. (G. Theorem 6.8 in Rudin.)

(d) Using integration by parts and Theorem 6.17 in Rulin produces $\int_{1}^{\infty} f d\rho = f(t) p(t) - f(t) p(t) - \int_{1}^{\infty} p df = -\int_{1}^{\infty} \alpha^{2} f dx = \int_{1}^{\infty} \alpha^{2} (x) \frac{1}{x^{2}} dx$ $= \int_{1}^{\infty} (x-1) \frac{1}{x^{2}} dx + \int_{2}^{\infty} (x-2) \frac{1}{x^{2}} dx + \int_{3}^{\infty} (x-3) \frac{1}{x^{2}} dx$ $= \int (1 - \frac{2}{x} + \frac{1}{x^2}) dx + \int (1 - \frac{4}{x} + \frac{4}{x^2}) dx + \int (1 - \frac{6}{x} + \frac{9}{x^2}) dx$ $= \left(x - 2h(x) - \frac{1}{x} \right) \left| + \left(x - 4h(x) - \frac{4}{x} \right) \right|_{2} + \left(x - 6h(x) - \frac{9}{x} \right) \right|_{3}$ $= \left| \frac{59}{12} + 2 \ln \left(\frac{3}{32} \right) \right| = 0.1824$

#5) Let
$$\delta \in (0,1)$$
 and consider $H_{\delta}^{\dagger} = \{(x,t) \in \mathbb{R}^2 : t \geq \delta\}$.

The sequence of functions $f_n(x,t) = \frac{4(-1)^n}{n^2} \cos(nx) e^{-n^2t} \quad (n=1,2,3,...,n)$
 $(x,t) \in H_{\delta}^{\dagger}$) ratisfies

$$\left|\frac{\partial f_n}{\partial t}(x_i t)\right| = \left|4^{(-1)}\cos(nx)e^{-n^2t}\right| \le 4e^{-n^2t} \le 4e^{-n\delta} \le 4e^{-n\delta} = M_n.$$

Since
$$\prod_{n=1}^{\infty} M_n = 4 \sum_{n=1}^{\infty} (e^{-8})^n$$
 is a convergent geometric series, it follows from the Freierstran M-test that $\sum_{n=1}^{\infty} \frac{\partial f_n(x,t)}{\partial t} = \sum_{n=1}^{\infty} 4(-1) \cos(nx) e^{-nx}$

is uniformly convergent on H_5^+ . Clearly, for each fixed $x \in \mathbb{R}$,

$$\sum_{n=1}^{\infty} f_n(x,t) = \sum_{n=1}^{\infty} \frac{4(-t)^n}{n^2} \cos(nx) e^{-n^2}$$
 converges. (The the Fraieretrass M-

test, for instance.) Therefore Theorem 7.17 in Rudin shows that

$$u(x,t) = \sum_{n=1}^{\infty} f_n(x,t) = \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} cos(nx) e^{-n^2t}$$

converges uniformly on H & and

$$\frac{\partial u}{\partial t}(x,t) = \sum_{n=1}^{\infty} \frac{\partial f_n}{\partial t}(x,t) = \sum_{n=1}^{\infty} 4(-1) \cos(nx) e^{-n^2t}$$

for $(x,t) \in H_{\delta}^{+}$. Similarly

$$\left|\frac{\partial^2 f_n}{\partial x^2}(x,t)\right| = \left|4\left(-1\right) \frac{n+1}{\cos(nx)} e^{-n^2 t}\right| \le 4e^{-\delta n} = M_n$$

$$\left|\frac{\partial f_n}{\partial x}(x,t)\right| = \left|\frac{4\left(-1\right) \frac{n+1}{\sin(nx)} e^{-n^2 t}}{n}\right| \le \frac{4}{n}e^{-\delta n} = \frac{M_n}{n}$$

to pils.

for $(x,t) \in H_{\frac{1}{8}}^{+}$ and n=1,2,3,... with $\sum_{n=1}^{\infty} M_n$ and $\sum_{n=1}^{\infty} \frac{M_n}{n}$ convergent, po by Theorem 7.17 in Rudin

$$\frac{\partial u}{\partial x}(x,t) = \sum_{N=1}^{\infty} \frac{\partial f_N(x,t)}{\partial x} = \sum_{N=1}^{\infty} \frac{4(-1)}{N} \lim_{n \to \infty} (nx)e^{-n^2t}$$

 $\frac{\partial^2 u}{\partial x^2}(x,t) = \sum_{n=1}^{\infty} \frac{\partial f_n}{\partial x^2}(x,t) = \sum_{n=1}^{\infty} 4(-1) \cos(nx) e^{-n^2 t}$

for $(x,t) \in H_S^+$. Note that $\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t)$ for all $(x,t) \in H_S^+$.

As $u(x,t) = \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos(nx) e^{-n^2t}$ satisfies the diffusion equation $u_t = u_{\infty}$ in H_S^+ . But $\delta \in (0,1)$ was arbitrary, so this function u = u(x,t) satisfies the diffusion equation in $H^+ = \{(x,t) \in \mathbb{R}^2 : t > 0\}$.

It remains to show that

(*)
$$u(x,0) = \sum_{n=1}^{\infty} \frac{4(-1)}{n^2} cos(nx) = f(x) \quad \text{for all real } x.$$

By routine calculations, we compute the Fourier coefficients of f:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} \left(x^2 - \frac{\pi^2}{3} \right) dx = \frac{1}{\pi} \left(\frac{x^3}{3} - \frac{\pi^2}{3} \right) \Big|_{0}^{\pi} = 0.$$

$$b = \int_{\pi}^{\pi} \int_{\pi}^{\pi} f(x) \sin(nx) dx = \int_{\pi}^{\pi} \int_{\pi}^{\pi} \frac{dx}{(x - \frac{\pi}{2})} \sin(nx) dx = 0 \quad (n = 1, 2, 3, ...)$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} \left(\frac{x^{2} - \pi^{2}}{3} \right) \cos(nx) dx = \frac{2}{\pi} \left(\frac{x^{2} - \pi^{2}}{3} \right) \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} \frac{\sin(nx)}{n} 2x dx$$

14 ptc. to here.

16 to

$$= \frac{-4}{n\pi} \int_{0}^{\infty} \frac{x \sin(nx) dx}{dV} = \frac{-4}{n\pi} \left(\frac{-x \cos(nx)}{n} \right) \left(\frac{-x \cos(nx)}{n} \right) dx$$

$$= \frac{4 \cos(n\pi)}{n^2} = \frac{4(-1)}{n^2} \qquad (n=1,2,3,...)$$

21 pts. to here.

Therefore, the Fourier series of f is

24 plin to here .

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \operatorname{cr}(n \times) + b_n \operatorname{sin}(n \times) \right) = \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \operatorname{cos}(n \times).$$

Note that
$$f(x) = 2x$$
 if $-\pi < x < \pi$,
$$f'_{+}(-\pi) = \lim_{h \to 0^{+}} \frac{f(-\pi + h) - f(-\pi)}{h} = -2\pi$$

and
$$f'(-\pi) = \lim_{h \to 0^{-}} \frac{f(-\pi+h) - f(-\pi)}{h} = 2\pi$$
.

Therefore, using 2π -periodicity of f and the Mean Value Theorem, $|f(x+t)-f(x)| \leq 2\pi |t|$

for all $x \in \mathbb{R}$ and all Tonfficiently small in absolute value. Theorem 8.14 in Rudin imphis that f is equal to its Fourier series at each $x \in \mathbb{R}$; i.e. $u(x,t) = \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos(nx) e^{-n^2t}$ satisfies the boundary condition (*).

33 pts. to here.

(#6) (a) If
$$k=0$$
 so $f(x)=e^{ikx}=1$ for all real x , then clearly $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}f(n)=1=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)dt$. Suppose k is

a nonzero integer and $f(x) = e^{ikx}$. Then

lim
$$\int_{N\to\infty}^{N} f(n) = \lim_{N\to\infty} \int_{N=1}^{N} e^{ikn}$$
 and ratio $e^{ik} \neq 1$.

=
$$\lim_{N\to\infty} \frac{1}{N} \left(\frac{e^{ik} - e^{ik(N+1)^{t}}}{1 - e^{ik}} \right)$$
 The numerator is a bounded function of N.

On the other hand
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikt} dt = \frac{e}{2\pi i k} \int_{-\pi}^{\pi} e^{ikt} dt = \frac{e^{ik\pi} - ik\pi}{2\pi i k} = 0$$
.

Therefore, in every case when
$$f(x) = e^{ikx}$$
 for some integer k , we have
$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=1}^{N} f(i) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt.$$

(b) Let f be a complex, continuous, 2π -periodic function on \mathbb{R} and let $\varepsilon>0$. By Theorem 8.15 in Rudin there exists a 2π -periodic trigonometric polynomial $P(\times) = \sum_{k=0}^{M} c_k e^{-kx}$ such that k=-M

 $|P(x)-f(x)| < \frac{\varepsilon}{3}$ for all real x. By part (a), $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} P(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(t) dt$ so there exists $N_0 \in \mathbb{N}$ such that $\left|\frac{1}{N} \sum_{n=1}^{N} P(n) - \frac{1}{2\pi} \int_{-\pi}^{\pi} P(t) dt\right| < \frac{\varepsilon}{3}$ for all $N \ge N_0$. If $N \ge N_0$ then

$$\left| \frac{1}{N} \sum_{n=1}^{N} f(n) - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt \right| \leq \frac{1}{N} \sum_{n=1}^{N} \left| f(n) - P(n) \right| + \left| \frac{1}{N} \sum_{n=1}^{N} P(n) - \frac{1}{2\pi} \int_{-\pi}^{\pi} P(t) dt \right| + \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| P(t) - f(t) \right| dt$$

 $\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$

Therefore $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}f(n)=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)dt$.

(c) No, (*) does not hold for every complex, bounded, measurable, 211periodic function on R for consider

 $f(t) = \begin{cases} 1 & \text{if } t-2k\pi \in \mathbb{Z} \text{ for some integer } k, \\ 0 & \text{otherwise} \end{cases}$

Clearly f is a 2π -periodic, complex (real, in fact!), hounded function on R. Since there are only countably many points t in R such that $t-2k\pi\in\mathbb{H}$ for some integer k (they are all of the form $m+2j\pi$ where $m,j\in\mathbb{H}$), it follows that f=0 a.e. so f is measurable. However f(n)=1 for all $n\in\mathbb{N}$ so

 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} f(n) = 1 \neq 0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} 0 dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt.$

#7) Note that for each fixed $t \in (c,1)$, the function $x \mapsto f(x,t)$ is measurable and bounded, and hence belongs to L'(c,1). Let $F(t) = \int_0^1 f(x,t) dx$ for $t \in (c,1)$. In order to show that $F(t) = \int_0^1 f(x,t) dx$ for $t \in (c,1)$. In order to show that $f(t) = \int_0^\infty f(t) dx$ for each $f(t) = \int_0^\infty f(t) dx$ for each $f(t) = \int_0^\infty f(t) dx$ for all $f(t) = \int_0^\infty f(t$

By hypothesis $\lim_{n\to\infty} g_n(x) = \frac{\partial f}{\partial t}(x, t_0)$ for all $x \in (0, 1)$. The mean value theorem implies the existence of a number c_n between t_0 and t_n such that

$$f(x,t_n)-f(x,t_o)=\frac{\partial f}{\partial t}(x,c_n)\cdot(t_n-t_o)$$

so for all $x \in (0,1)$ and all $n \ge 1$, we have $|g_n(x)| \le M$ where $M = \sup\{\left|\frac{\partial f}{\partial t}(x,t)\right| : (x,t) \in S\} < \infty$ by hypothesis. It follows from the dominated convergence theorem that

$$\lim_{n\to\infty}\int_{0}^{1}g_{n}(x)dx = \int_{0}^{1}\frac{\partial f}{\partial t}(x,t_{0})dx.$$

$$\lim_{n\to\infty} \frac{F(t_n) - F(t_o)}{t_n - t_o} = \lim_{n\to\infty} \frac{\int_{\sigma} f(x, t_n) dx - \int_{\sigma} f(x, t_o) dx}{t_n - t_o}$$

$$= \lim_{n\to\infty} \int_{\sigma} g_n(x) dx.$$

Therefore $F(t) = \int_{0}^{t} f(x,t)dx$ is differentiable at each $t \in (0,1)$

 $\frac{d}{dt} \int_{0}^{1} f(x,t) dx = F'(t) = \int_{0}^{1} \frac{\partial f}{\partial t}(x,t) dx.$

E₁:

#8) He imitate the construction of the Cantor ternary set to derive an alternate description of E. At the zeroth stage, we delete the two open intervals $(\frac{2}{10}, \frac{3}{10})$ and $(\frac{7}{10}, \frac{8}{10})$ from [0,1] to obtain the closed set E_0 . At the first stage, we delete the 16 open intervals

$$\frac{k}{10} + \left(\frac{2}{100}, \frac{3}{100}\right)$$
 and $\frac{k}{10} + \left(\frac{7}{100}, \frac{8}{100}\right)$ $\left(k = 0, 1, 3, 4, 5, 6, 8, 9\right)$

from E_o to obtain the closed set E_1 . Continuing in this manner, at the k^{th} stage we delete 2.8^k disjoint open intervals, each of length $10^{-(k+1)}$ from E_{k-1} to obtain the closed set E_k . It is clear that $E_k = 0$ $E_k = 0$

- a Borel set.
- (a) He compute the Sebesgue measure of E by first computing the measure of the open set [0,1] E. By construction [0,1] E is countable union of Topen intervals so

$$m([0,1] \setminus E) = 2 \cdot \frac{1}{10} + 2 \cdot 8(\frac{1}{100}) + 2 \cdot 8 \cdot 8(\frac{1}{1000}) + \dots$$

$$= \sum_{k=0}^{\infty} 2 \cdot 8^{k} \cdot 10^{(k+1)} = \frac{1}{4} \sum_{k=0}^{\infty} (\frac{4}{5})^{k+1} = \frac{1}{4} \cdot \frac{\frac{1}{100}}{1-\frac{1}{100}} = 1.$$

Therefore
$$m(E)=0$$
.

Let $I_{k,j}$ $(j=1,...,2^k)$ denote the jth interval removed at the kth step in the construction of the Center ternary set, arranged in excending order; i.e. $I_{k,1} < I_{k,2} < ... < I_{k,2}$.

16 pts. (a) Note that
$$f(x) = \sum_{k=0}^{\infty} \sum_{j=1}^{k} \frac{1}{k+1} \chi_{\mathbf{k},j}(x)$$
 for $0 \le x \le 1$,

so f is measurable, being the pointwise limit of a sequence of simple measurable functions: $f_{k} = \sum_{k=0}^{\infty} \sum_{j=1}^{\infty} \frac{1}{k+1} \chi_{\mathbf{I}_{k,j}} (K=0,1,2,...)$.

$$= \sum_{k=0}^{\infty} \frac{1}{k+1} \cdot \frac{2}{3k+1}$$
(See next

$$= \frac{1}{2} \frac{1}{k+1} \cdot \frac{2}{3k+1}$$

$$= \frac{1}{2} \sum_{l=1}^{\infty} \frac{(2/3)^{l}}{l} = \frac{1}{2} \ln(3)$$

$$= \frac{1}{2} \ln(3)$$

Computation for #9(b):

Since
$$\sum_{k=0}^{\infty} t^k = \frac{1}{1-t}$$
 if $|t| < 1$,

where the series converges uniformly on each compact subset of (-1,1), we have for each $x \in (-1,1)$ that

$$\sum_{k=0}^{\infty} \frac{x^{k}}{k!} = \sum_{k=0}^{\infty} \frac{x^{k}}{x^{k}} = \sum_{k=0}^{\infty} \int_{0}^{\infty} t^{k} dt = \int_{0}^{\infty} \left(\sum_{k=0}^{\infty} t^{k}\right) dt$$

$$= \int_{0}^{\infty} \frac{1}{1-t} dt = -\ln(1-t) = -\ln(1-x).$$

Therefore, setting
$$x = \frac{2}{3}$$
 we have
$$\sum_{k=1}^{\infty} \frac{\left(\frac{2}{3}\right)^k}{k} = -\ln\left(1 - \frac{2}{3}\right) = \ln(3).$$