Final Exam, Part II
Spring 2006

Name: Dr. Grow
(1 pt.)

This portion of the 200 point final examination is "open book"; that is, you may freely use your two textbooks for this class: Rudin's Principles of Mathematical Analysis and Royden's Real Analysis. Work any three problems of your choosing, subject to the constraints that at least one problem must be chosen from Group A and at least one problem must be chosen from Group B. Please CIRCLE the numbers of the problems on this portion whose solutions you wish me to grade.

Group A.

4.(33 pts.) Let $\alpha(x)$ denote the fractional part of the real number x. For instance $\alpha(5 / 4)=.25, \alpha(2)=0$, and $\alpha(\pi)=.1415926 \ldots$
(a) Compute the total variation of α on the interval $[1,4]$.
(b) Show that the product of two functions of bounded variation on a closed bounded interval is of bounded variation on that interval.
(c) Let $f(x)=1 / x$ and $\beta(x)=\alpha^{2}(x)$. Why is f Riemann-Stieltjes integrable with respect to β on the interval $[1,4]$?
(d) Evaluate the Riemann-Stieltjes integral $\int_{1}^{4} f d \beta$.
5.(33 pts.) Let f be the 2π-periodic function defined on a fundamental period by the formula

$$
f(x)=x^{2}-\frac{\pi^{2}}{3} \text { if }-\pi \leq x<\pi
$$

Show, by rigorous argument, that

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n x) e^{-n^{2} t}
$$

defines a function which solves the diffusion equation $u_{t}=u_{x x}$ in the region $t>0$ of the $x t-$ plane and which satisfies the initial condition $u(x, 0)=f(x)$ for $-\infty<x<\infty$.
6.(33 pts.) (a) If $k \in \mathbb{Z}$ and $f(x)=e^{i k x}$, show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t . \tag{}
\end{equation*}
$$

(b) Show that $\left({ }^{*}\right)$ holds for every complex, continuous, 2π-periodic function f on \mathbb{R}.
(c) Does (*) hold for every complex, bounded, measurable, 2π-periodic function f on \mathbb{R} ? Prove your assertion.

Group B.

7. (33 pts.) Let f be a function defined and bounded on the unit square

$$
S=\{(x, t): 0<x<1,0<t<1\} .
$$

Suppose that:
(a) for each fixed t in $(0,1)$ the function $x \mapsto f(x, t)$ is measurable,
(b) at each (x, t) in S, the partial derivative $\frac{\partial f}{\partial t}$ exists, and
(c) $\frac{\partial f}{\partial t}$ is a bounded function in S.

Show that $\frac{d}{d t} \int_{0}^{1} f(x, t) d x=\int_{0}^{1} \frac{\partial f}{\partial t}(x, t) d x$.
8. (33 pts.) Let E denote the set of real numbers in the interval [0,1$]$ which possess a decimal expansion which contains no 2 's and no 7 's. For instance, the numbers $1 / 2=.5$, and $7 / 10=.6999 \ldots$ belong to E, while the numbers $1 / 4=.25=.24999 \ldots$ and $1 / \sqrt{2}=.7071 \ldots$ do not.
(a) Compute the Lebesgue measure of E.
(b) Determine, with proof, whether E is a Borel set.
9. (33 pts.) Let f be a function defined on the interval [0,1] as follows: $f(x)=0$ if x is a point of the Cantor ternary set and $f(x)=1 / k$ if x is in one of the complementary intervals of the Cantor set with length 3^{-k}. For example, $f(1 / 3)=0, f(1 / 2)=1$, and $f(4 / 5)=1 / 2$.
(a) Show that f is a measurable function.
(b) Evaluate the Lebesgue integral $\int_{0}^{1} f(x) d x$.
(a) - (c) B pts. each (a) apps.
α is right-contimuous on $[1,4]$ and
(\#4) (a) Since ${ }^{2} \uparrow$ on $[1,2),[2,3)$, and $[3,4)$, we have

$$
\begin{aligned}
\operatorname{Var}(\alpha ; 1,4)= & \alpha\left(2^{-}\right)-\alpha\left(\lambda^{1}\right)+\alpha\left(2^{-}\right)-\alpha(2)^{0}+\alpha\left(3^{1}\right)-\alpha(2)+\alpha\left(3^{-}\right)-\alpha(3) \\
& +\alpha\left(4^{1}\right)-\alpha(3)^{0}+\alpha\left(4^{1}\right)-\alpha(4) \\
= & 6
\end{aligned}
$$

(b) Lat f and g he in $B V[a, b]$. For all $x \in[a, b]$,

$$
|f(x)| \leqslant|f(x)-f(a)|+|f(a)| \leqslant \operatorname{Var}(f ; a, x)+|f(a)| \leqslant \operatorname{Var}(f ; a, b)+|f(a)|
$$

$$
\text { po } M_{f}=\sup \{|f(x)|: x \in[a, b]\} \leq \operatorname{Vav}(f ; a, b)+|f(a)|<\infty
$$

Similarly, $M_{g}=\sup \{|g(x)|: x \in[a, b]\}<\infty$. Let $P=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right.$ he a partition of $[a, b]$. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\Delta(f g)_{i}\right| & =\sum_{i=1}^{n}\left|f\left(x_{i}\right) g\left(x_{i}\right)-f\left(x_{i-1}\right) g\left(x_{i-1}\right)\right| \\
& \leqslant \sum_{i=1}^{n}\left(\left|f\left(x_{i}\right) g\left(x_{i}\right)-f\left(x_{i}\right) g\left(x_{i-1}\right)\right|+\mid f\left(x_{i}\right) g\left(x_{i-1}\right)-f\left(x_{i-1}\right) g\left(x_{i-},\right.\right. \\
& \leqslant \sum_{i=1}^{n} M_{f}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|+\sum_{i=1}^{n} M_{g}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|,
\end{aligned}
$$

so taking the supriemum over all partitions P of $[a, b]$ yields

$$
\operatorname{Var}(f g ; a, b) \leq M_{f} \operatorname{Var}(g ; a, b)+M_{g} \operatorname{Vav}(f ; a, b)<\infty
$$

(c) $f(x)=\frac{1}{x}$ is continuous on $[1,4]$ and $\beta=\alpha^{2}$ is of bounded
(\#5) Let $\delta \in(0,1)$ and consider $H_{\delta}^{+}=\left\{(x, t) \in \mathbb{R}^{2}: t \geqslant \delta\right\}$.
The sequence of functions $f_{n}(x, t)=\frac{4(-1)^{n}}{n^{2}} \cos (n x) e^{-n^{2} t} \quad(n=1,2,3, \ldots$, $\left.(x, t) \in H_{\delta}^{+}\right)$satisfies

$$
\left|\frac{\partial f_{n}}{\partial t}(x, t)\right|=\left|4(-1)^{n+1} \cos (n x) e^{-n^{2} t}\right| \leq 4 e^{-n^{2} t} \leq 4 e^{-n t} \leq 4 e^{-n \delta} \equiv M_{n} .
$$

Since $\sum_{n=1}^{\infty} M_{n}=4 \sum_{n=1}^{\infty}\left(e^{-\delta}\right)^{n}$ is a convergent geometric series, it follows frow the of eierthan M - tat that $\sum_{n=1}^{\infty} \frac{\partial f_{n}}{\partial t}(x, t)=\sum_{n=1}^{\infty} 4(-1)^{n+1} \cos (n x) e^{-n^{2}}$ is uniformly convergent on ${H_{s}}_{+}^{+}$. Clearly, for each fixed $x \in \mathbb{R}$, $\sum_{n=1}^{\infty} f_{n}(x, 1)=\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n x) e^{-n^{2}}$ converges. (Tee the sfeieratrase 4 test, for instance.) Therefore Theorem 7.17 in Rudin shows that

$$
u(x, t)=\sum_{n=1}^{\infty} f_{n}(x, t)=\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n x) e^{-n^{2} t}
$$

converges uniformly on H_{δ}^{+}and

$$
\frac{\partial u}{\partial t}(x, t)=\sum_{n=1}^{\infty} \frac{\partial f_{n}}{\partial t}(x, t)=\sum_{n=1}^{\infty} 4(-1)^{n+1} \cos (n x) e^{-n^{2} t}
$$

for $(x, t) \in H_{\delta}^{+}$, Amilarly

$$
\begin{aligned}
& \left|\frac{\partial^{2} f_{n}}{\partial x^{2}}(x, t)\right|=\left|4(-1)^{n+1} \cos (n x) e^{-n^{2} t}\right| \leqslant 4 e^{-\delta n}=M_{n} \\
& \left|\frac{\partial f_{n}}{\partial x}(x, t)\right|=\left|\frac{4(-1)^{n+1} \sin (n x) e^{-n^{2} t}}{n}\right| \leqslant \frac{4}{n} e^{-\delta n}=\frac{M_{n}}{n}
\end{aligned}
$$

for $(x, t) \in H_{\delta}^{+}$and $n=1,2,3, \ldots$ with $\sum_{n=1}^{\infty} M_{n}$ and $\sum_{n=1}^{\infty} \frac{M_{n}}{n}$ convergent, po by Theorem 7.17 in Rudin

$$
\begin{aligned}
& \frac{\partial u}{\partial x}(x, t)=\sum_{n=1}^{\infty} \frac{\partial f_{n}}{\partial x}(x, t)=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n} \sin (n x) e^{-n^{2} t} \\
& \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\sum_{n=1}^{\infty} \frac{\partial^{2} f_{n}}{\partial x^{2}}(x, t)=\sum_{n=1}^{\infty} 4(-1)^{n+1} \cos (n x) e^{-n^{2} t}
\end{aligned}
$$

for $(x, t) \in H_{\delta}^{+}$. Note that $\frac{\partial u}{\partial t}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)$ for all $(x, t) \in H_{\delta}^{+}$
so $u(x, t)=\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n x) e^{-n^{2} t}$ satisfies the diffusion equation $u_{t}=u_{x x}$ in H_{δ}^{+}. But $\delta \in(0,1)$ was arlitiary, so this function 16. to $u=u(x, t)$ satisfies the diffusion equation in $H^{+}=\left\{(x, t) \in \mathbb{R}^{2}: t>0\right\}$.

Pt remains to show that

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n x)=f(x) \text { for all read } x . \tag{*}
\end{equation*}
$$

By routine calculation, we compute the Fourier coefficients of f :

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi}\left(x^{2}-\frac{\pi^{2}}{3}\right) d x=\left.\frac{1}{\pi}\left(\frac{x^{3}}{3}-\frac{\pi^{2} x}{3}\right)\right|_{0} ^{\pi}=0 . \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \overbrace{\left(x^{2}-\frac{\pi^{2}}{3}\right)}^{\underbrace{\sin (n x)}_{\text {even }})} d x=0 \quad(n=1,2,3, \ldots) \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi}(\underbrace{\left(x^{2}-\frac{\pi^{2}}{3}\right.}_{\tau}) \underbrace{d V}_{d r}(n x) d x \\
& d V \\
& \frac{2}{\pi}\left(x^{2}-\frac{\pi^{2}}{3}\right) \sin (n x) \\
& -\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin (n x)}{n} 2 x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-4}{n \pi} \int_{0}^{\pi} \underbrace{x \sin (n x) d x}_{V} \underbrace{}_{d V}=\frac{-4}{n \pi}\left(\left.\frac{-x \cos (n x)}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi}-\frac{\cos (n x)}{n} d x\right) \\
& =\frac{4 \cos (n \pi)}{n^{2}}=\frac{4(-1)^{n}}{n^{2}} \quad(n=1,2,3, \ldots)
\end{aligned}
$$

Therefore, the Fourier series of f is
\qquad

$$
a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (x x)\right)=\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n x) \text {. }
$$

Mute that $f^{\prime}(x)=2 x$ if $-\pi<x<\pi$,

$$
f_{t}^{\prime}(-\pi)=\lim _{h \rightarrow 0^{+}} \frac{f(-\pi+h)-f(-\pi)}{h}=-2 \pi
$$

and $f_{-}^{\prime}(-\pi)=\lim _{h \rightarrow 0^{-}} \frac{f(-\pi+h)-f(-\pi)}{h}=2 \pi$.
Therefore, using 2π-periodicity of f and the mean Value Yheorenn,

$$
|f(x+t)-f(x)| \leq 2 \pi|t|
$$

for all $x \in \mathbb{R}$ and all ${ }^{t}$ sufficiently small in absolute value. Thereon 8.14 in Qudin imphis that f is equal to its fourier 33 pus.
to here. \quad series at each $x \in \mathbb{R}$; ie. $n(x, t)=\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n x) e^{-n^{2} t}$ satisfies the boundary condition (*).
(\#6) (a) If $k=0$ so $f(x)=e^{i k x}=1$ for all real x, then clearly $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(n)=1=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t$. Suppose k is a nonzero integer and $f(x)=e^{i k x}$. Thew

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(n) & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{i k n} \quad \begin{array}{l}
\text { A geometric series } \\
\text { with first term } e^{i k} \\
\text { and ratio } e^{i k} \neq 1 .
\end{array} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N}\left(\frac{e^{i k}-e^{i k(N+1)}}{1-e^{i k}}\right) \quad \begin{array}{l}
\text { The numerator is } \\
\text { a bounded function } \\
\text { of } N .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =0 . \\
\text { On the other hand } \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k t} d t \\
= & \left.\frac{e^{i k \pi}-e^{i k t}}{2 \pi i k}\right|_{t=-\pi} ^{\pi} \\
& =0 .
\end{aligned}
$$

Therefore, in every case when $f(x)=e^{i k x}$ for some integer k, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{=1}^{N} f()=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t
$$

(b) Let f he a complex, continuous, 2π-periodic function on \mathbb{R} and let $\varepsilon>0$. By Theorem 8.15 in Cudin there exists a 2π-periodic trigonometric polynomial $P(x)=\sum_{k=-M}^{M} c_{k} e^{i k x}$ such that
$|P(x)-f(x)|<\varepsilon / 3$ for all real x. By part (a), $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} P(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P(t) d$ so there exists $N_{0} \in \mathbb{N}$ such that $\left|\frac{1}{N} \sum_{n=1}^{N} P(n)-\frac{1}{2 \pi} \int_{-\pi}^{\pi} P(t) d t\right|<\varepsilon / 3$ for all $N \geqslant N_{0}$. If $N \geq N_{0}$ then

$$
\begin{aligned}
&\left|\frac{1}{N} \sum_{n=1}^{N} f(n)-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t\right| \leqslant \frac{1}{N} \sum_{n=1}^{N}|f(n)-P(n)| \\
&+\left\lvert\, \frac{1}{N} \sum_{n=1}^{N} P(n)-\frac{1}{2 \pi} \int_{-\pi}^{\pi} P(t) d t\right. \\
& \left.+\frac{1}{2} \int_{-\pi}^{\pi} P(t)-f(t) \right\rvert\, d t \\
& \leqslant \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

Therefore $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t$.
(c) $N_{0},(*)$ does not hold for every complex, bounded, measurable, $2 \pi-$ periodic function on \mathbb{R} for consider

$$
f(t)= \begin{cases}1 & \text { if } \\ 0 & t-2 k \pi \in \mathbb{Z} \text { for some integer } k, \\ \text { otherwise. }\end{cases}
$$

Clearly f is a 2π-periodic, complex (real, infract!), hounded function on \mathbb{R}. Since there are only countably many points t in \mathbb{R} sech that $t-2 k \pi \in \mathbb{Z}$ for some integer k (they are all of the form $m+2 j \pi$ where $m, j \in \mathbb{Z}$), it follows that $f=0$ a.e. so f is measurable.
However $f(n)=1$ for all $n \in \mathbb{N}$ so

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(n)=1 \neq 0=\frac{1}{2 \pi} \int_{-\pi}^{\pi} O d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t .
$$

(\#7) Note that for each fixed $t \in(0,1)$, the function $x \mapsto f(x, t)$ is measurable and bounded, and hence belongs to $L^{\prime}(0,1)$. Let $F(t)=\int_{0}^{1} f(x, t) d x$ for $t \in(0,1)$. An order to show that F is differentiable, we must show that for each $t_{0} \in(0,1)$ and each sequence $\left\langle t_{n}\right\rangle_{n=1}^{\infty}$ such that $t_{n} \rightarrow t_{0}$ and $t_{n} \neq t_{0}$ for all $n \geqslant 1$, the $\operatorname{limit} \lim _{n \rightarrow \infty} \frac{F\left(t_{n}\right)-F\left(t_{0}\right)}{t_{n}-t_{0}}$ exists and is independent of the sequence $\left\langle t_{n}\right\rangle$. Jo this end let t_{0} and $\left\langle t_{n}\right\rangle$ he as above and define a sequence of functions on $(0,1)$ by

$$
g_{n}(x)=\frac{f\left(x, t_{n}\right)-f\left(x, t_{0}\right)}{t_{n}-t_{0}} \quad(n=1,2,3, \ldots)
$$

By hypothesis $\lim _{n \rightarrow \infty} g_{n}(x)=\frac{\partial f}{\partial t}\left(x, t_{0}\right)$ for all $x \in(0,1)$. The mean value thorn imphes the existence of a number c_{n} between t_{0} and t_{n} such that

$$
f\left(x, t_{n}\right)-f\left(x, t_{0}\right)=\frac{\partial f}{\partial t}\left(x, c_{n}\right) \cdot\left(t_{n}-t_{0}\right),
$$

so for all $x \in(0,1)$ and all $n \geq 1$, we have $\left|g_{n}(x)\right| \leq M$ where $M=\sup \left\{\left|\frac{\partial f}{\partial t}(x, t)\right|:(x, t) \in S\right\}<\infty$ by hypothesis. It follows from the dominated convergence theorem that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(x) d x=\int_{0}^{1} \frac{\partial f}{\partial t}\left(x, t_{0}\right) d x
$$

But

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{F\left(t_{n}\right)-F\left(t_{0}\right)}{t_{n}-t_{0}} & =\lim _{n \rightarrow \infty} \frac{\int_{0}^{1} f\left(x, t_{n}\right) d x-\int_{0}^{1} f\left(x, t_{0}\right) d x}{t_{n}-t_{0}} \\
& =\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(x) d x .
\end{aligned}
$$

Therefore $F(t)=\int_{0}^{1} f(x, t) d x$ is differentiable at each $t \in(0,1)$ with

$$
\frac{d}{d t} \int_{0}^{1} f(x, t) d x=F^{\prime}(t)=\int_{0}^{1} \frac{\partial f}{\partial t}(x, t) d x
$$

(\#8) He imitate the construction of the Cantor ternary set to derive an alternate description of E. at the zeroth stage, we delete the two open intervals $\left(\frac{2}{10}, \frac{3}{10}\right)$ and $\left(\frac{7}{10}, \frac{8}{10}\right)$ from $[0,1]$ to obtain the closed set E_{0}. at the first stage, we delete the 16 open intervals

$$
\frac{k}{10}+\left(\frac{2}{100}, \frac{3}{100}\right) \mathrm{mad} \frac{k}{10}+\left(\frac{7}{100}, \frac{8}{100}\right) \quad(k=0,1,3,4,5,6,8,9)
$$

from E_{0} to obtain the closed net E_{1}. Continuing in this manner, at the $k^{\text {th }}$ stage we dole $2 \cdot 8^{k}$ disjoint open intervals, each of length $10^{-(k+1)}$ from E_{k-1} to obtain the closed aet E_{k}. It is clear that

$$
E=\bigcap_{k=0}^{\infty} E_{k} .
$$

16 apis. (b) E is closed, being the intersection of closed sets, so E is a Bored net.
(a) We compute the Lebesgue measure of E by first computing the measure of the open set $[0,1], E$. By construction $[0,1], E$ is countable union of open intervals so

$$
\begin{aligned}
m([0,1] \backslash E) & =2 \cdot \frac{1}{10}+2 \cdot 8\left(\frac{1}{100}\right)+2 \cdot 8 \cdot 8\left(\frac{1}{1000}\right)+\cdots \\
& =\sum_{k=0}^{\infty} 2 \cdot 8^{k} \cdot 10^{-(k+1)}=\frac{1}{4} \sum_{k=0}^{\infty}\left(\frac{4}{5}\right)^{k+1}=\frac{1}{4} \cdot \frac{4 / 5}{1-4 / 5}=1 .
\end{aligned}
$$

Therefor $m(E)=0$.
(\#9) Let $I_{k, j}\left(j=1, \ldots, 2^{k}\right)$ denote the $j^{\text {th }}$ interval removed at the $k^{\text {th }}$ step in the construction of the Cantor temary set, arranged in ascending order ; ie. $I_{k, 1}<I_{k, 2}<\ldots<I_{k, 2}$.

16 ph. (a) Inter that $f(x)=\sum_{k=0}^{\infty} \sum_{j=1}^{2^{k}} \frac{1}{k+1} \chi_{I_{k, j}}{ }^{(x)}$ for $0 \leq x \leq 1$,
so f is mensurable, being the pointuris limit of a sequence of simple measurable functions: $f_{k}=\sum_{k=0}^{k} \sum_{j=1}^{2^{k}} \frac{1}{k+1} X_{I_{k, j}}(k=0,1,2, \ldots)$.
(b)

$$
\begin{aligned}
\int_{0}^{1} f d x & \stackrel{\text { M.c. }}{=} \lim _{k \rightarrow \infty} \int_{0}^{1}\left(\sum_{k=0}^{K} \sum_{j=1}^{2^{k}} \frac{1}{k+1} x_{I_{k, j}}\right) d x \\
& =\lim _{k \rightarrow \infty} \sum_{k=0}^{K} \sum_{j=1}^{2^{k}} \frac{1}{k+1} m\left(I_{k, j}\right) \\
& =\lim _{k \rightarrow \infty} \sum_{k=0}^{K} \sum_{j=1}^{2^{k}} \frac{1}{k+1} \cdot 3^{-(k+1)} \\
& =\sum_{k=0}^{\infty} \frac{1}{k+1} \cdot \frac{2^{k}}{3^{k+1}} \\
& =\frac{1}{2} \sum_{l=1}^{\infty} \frac{(2 / 3)^{l}}{l}=\frac{1}{2} \operatorname{ls}(3)
\end{aligned}
$$

Computation for \#9(b):
Since $\sum_{k=0}^{\infty} t^{k}=\frac{1}{1-t}$ if $|t|<1$,
where the series converges uniformly ow each compact subset of $(-1,1)$, we have for each $x \in(-1,1)$ that

$$
\begin{aligned}
\sum_{l=1}^{\infty} \frac{x^{l}}{l}=\sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1} & =\sum_{k=0}^{\infty} \int_{0}^{x} t^{k} d t \stackrel{\int_{0}^{\text {(uniform convergence !) }}=\int_{0}^{x}\left(\sum_{k=0}^{\infty} t^{k}\right) d t}{ } \\
& =\int_{0}^{x} \frac{1}{1-t} d t=-\left.\ln (1-t)\right|_{t=0} ^{x}=-\ln (1-x) .
\end{aligned}
$$

Therefore, setting $x=2 / 3$ we have

$$
\sum_{l=1}^{\infty} \frac{(2 / 3)^{l}}{l}=-\ln \left(1-\frac{2}{3}\right)=\ln (3) .
$$

