Name: Dr. Grow Spring 2008

This is an open-textbook, open-notes test. That is, while solving the problems on this examination you may refer to your textbooks, Royden's Real Analysis and Karatzas and Shreve's Brownian Motion and Stochastic Calculus, or to the lecture notes you have taken for Math 416 this semester. Please solve any three of the following four problems and circle the number of each problem you want me to grade. Each problem is of equal value: 100 points. Thus, the total possible number of points on this examination is 300 .

1. Let E denote a Borel subset of a separable metric space (X, d), let $m_{\alpha}(E)$ denote the Hausdorff α-dimensional measure of E, and let P denote the Cantor ternary set in the interval $[0,1]$.
ir (a) Show that $\inf \left\{\alpha: m_{a}(E)=0\right\}=\sup \left\{\beta: m_{\beta}(E)=\infty\right\}$.
(Note: The common value of the preceding infimum and supremum is called the Hausdorff dimension of the set E.)
25 (b) If $\alpha>\log (2) / \log (3)$, show that $m_{a}(P)=0$.
(c) If $\beta=\log (2) / \log (3)$, show that $m_{\beta}(P)=1 / 2^{\beta}$.

10 (d) What is the Hausdorff dimension of P ?
2. Let f_{1}, \ldots, f_{n} be measurable real-valued functions on a probability space (X, \mathcal{A}, μ). Prove or

\Rightarrow disprove: $\mathcal{F}=\left\{f_{1}, \ldots, f_{n}\right\}$ is an independent family if and only if the cumulative joint distribution

$\Leftrightarrow 85$ function for the ordered n-tuple $\left(f_{1}, \ldots, f_{n}\right)$ satisfies

$$
F_{\left(f_{1}, \ldots, f_{n}\right)}\left(t_{1}, \ldots, t_{n}\right)=F_{f_{1}}\left(t_{1}\right) \ldots F_{f_{n}}\left(t_{n}\right)
$$

for all $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$.
50. 3. (a) Let $f \in L^{2}(0,1)$ have the property that $\hat{f}(n) \neq 0$ for all integers n. Show that the set of all convolution products $f * g$, as g ranges over $L^{2}(0,1)$, is dense in $L^{2}(0,1)$.
50 (b) Let $f \in L^{2}(0,1)$ have the property that the set of all convolution products $f * g$, as g ranges over $L^{2}(0,1)$, is dense in $L^{2}(0,1)$. Show that $\hat{f}(n) \neq 0$ for all integers n.
50.4. 4a) Show that there is no function $d \in L^{1}\left(\mathbb{R}^{n}\right)$ such that $d * f=f$ for all $f \in L^{1}\left(\mathbb{R}^{n}\right)$.

50 (b) Show that there is a sequence of functions $\left\{d_{k}\right\}_{k=1}^{\infty} \subseteq L^{\prime}\left(\mathbb{R}^{n}\right)$ such that $d_{k} * f \rightarrow f$ in the $L^{1}\left(\mathbb{R}^{n}\right)$-norm for each $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
\#1. (a) The desired conclusion, inf $\left\{\alpha: m_{\alpha}(E)=0\right\}=\sup \left\{\beta: m_{\beta}(E)=\infty\right\}$, easily follows from (1) and (2) below.
(1) If $m_{\alpha_{0}}(E)<\infty$ then $m_{\alpha}(E)=0$ for all $\alpha>\alpha_{0}$.
(2) If $0<m_{\alpha_{0}}(E)$ then $m_{\beta}(E)=\infty$ for all $\beta<\alpha_{0}$.

Proof of (1): Suppose $m_{\alpha_{0}}(E)<\infty$ and let $\alpha>\alpha_{0}$. Thew to each efficiently small $\varepsilon>0$, there corresponds a covering of open balls $\left\{B_{i}\right\}_{i=1}^{\infty}$ of E with each radius $r_{i} \in(0, \varepsilon)$ and $\sum_{i=1}^{\infty} r_{i}^{\alpha}<m_{\alpha_{0}}(E)+1$. Then $\sum_{i=1}^{\infty} r_{i}^{\alpha}=\sum_{i=1}^{\infty} r_{i}^{\alpha-\alpha_{0}} \cdot r_{i}^{\alpha_{0}}<\varepsilon^{\alpha-\alpha} 0 \sum_{i=1}^{\infty} r_{i}^{\alpha_{0}}<\varepsilon^{\alpha-\alpha_{0}}\left(m_{\alpha_{0}}(E)+1\right)$, which tends to 0 as $\varepsilon \rightarrow 0^{+}$. Thus

$$
\begin{aligned}
m_{\alpha}(E)=\lim _{\varepsilon \rightarrow 0^{+}} \lambda_{\alpha}^{(\varepsilon)}(E) & =\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{\sum_{i=1}^{\infty} r_{i}^{\alpha}: E \subseteq \bigcup_{i=1}^{\infty} B_{i}, \text { exch } r_{i} \in(0, \varepsilon)\right\} \\
& =0 .
\end{aligned}
$$

Proof of (2): Suppose $0<m_{\alpha_{0}}(E)$ and let $\beta<\alpha_{0}$. Then for each sufficiently small $\varepsilon>0$ and for every covering of E by open balls $\left\{B_{i}\right\}_{i=1}^{\infty}$ with each radius $r_{i} \in(0, \varepsilon)$, we have $\sum_{i=1}^{\infty} r_{i}^{\alpha_{0}}>\frac{m_{\alpha_{0}}(E)}{2}>0$. Consequently,

$$
\sum_{i=1}^{\infty} r_{i}^{\beta}=\sum_{i=1}^{\infty} r_{i}^{\beta-\alpha_{0}} \cdot r_{i}^{\alpha_{0}}>\varepsilon^{\beta-\alpha_{0}} \sum_{i=1}^{\infty} r_{i}^{\alpha_{0}}>\varepsilon^{\beta-\alpha_{0}} \cdot \frac{m_{\alpha_{0}}(E)}{2}
$$

which tends to ∞ as $\varepsilon \rightarrow 0^{+}$. Therefore

$$
m_{\rho}(E)=\lim _{\varepsilon \rightarrow 0^{+}} \lambda_{\beta}^{(\varepsilon)}(E)=\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{\sum_{i=1}^{\infty} r_{i}^{\beta}: E \subseteq \bigcup_{i=1}^{\infty} B_{i} \text {, each } r_{i} \in(0, \varepsilon)\right\}=\infty .
$$

\#1. (b) Suppose $\alpha>\frac{\log (2)}{\log (3)}$; i.e. appose $3^{\alpha}>2$. Stolen $\varepsilon>0$, choose $k_{0} \in \mathbb{N}$ asch that $1 / 3^{k_{0}}<\varepsilon$. For all $k \geqslant k_{0}, 2^{k}$ cloned diginit internals of length $1 / 3^{k}$ cover P. She interiors of thee intervals cover all but a finite number of points of P. Therefore

$$
\lambda_{\alpha}^{(\varepsilon)}(P) \leqslant \sum_{i=1}^{2^{k}} r_{i}^{\alpha}=\sum_{i=1}^{2^{2}}\left(\frac{1}{2} \cdot \frac{1}{3^{k}}\right)^{\alpha}=2^{k}\left(\frac{1}{2 \cdot 3^{k}}\right)^{\alpha}=\frac{1}{2^{\alpha}}\left(\frac{2}{3^{\alpha}}\right)^{k} \rightarrow 0
$$

as $k \rightarrow \infty$. Thus $\lambda_{\alpha}^{(\varepsilon)}(P)=0$ for all $\varepsilon>0$ as $m_{\alpha}(P)=\lim _{\varepsilon \rightarrow 0^{+}} \lambda_{\alpha}^{(\varepsilon)}(P)=0$.
(c) Suppose $\beta=\frac{\log (2)}{\log (3)}$; ie. appose $3^{\beta}=2$. Let $\varepsilon>0$ and let $\left\{B_{i}\right\}_{i=1}^{\infty}$ he a sequence of open balls (ie. parinteronels) in $[0,1]$ such that $P \subseteq \bigcup_{i=1}^{\infty} B_{i}$ and $r_{i}=$ radius of $B_{i} \in(0, \varepsilon)$ for all $i \geqslant 1$. Since P is compact there exists a finite subeover $B_{i}, \ldots, B_{i_{n}}$ of P. Recall that $P=\bigcap_{k=1}^{\infty} P_{k}$ where each P_{k} consists of the union of 2^{k} closed intervals of length $1 / 3^{k}$ obtained at the $k^{\text {th }}$ stage in the construction of the Cantor ret. Let $\delta>0$ and let $(1+\delta) B_{i j}$ denote the dilate by it of the ball $B_{i j}$ about its center (ie. midpoint). Choose $k \in \mathbb{N}$ sufficiently large so $1 / 3^{k}<\delta \cdot \min \left\{r_{i j}: 1 \leq j \leq n\right\}$. It flows that $\frac{1}{3^{k}}+r_{i j}<(1+\delta) r_{i j}$ for all $1 \leq j \leq n$, no if one of the closed intervals I of length $1 / 3^{k}$ in the collection of 2^{k} intervols generating P_{k} has nonempty intersection with some ball $B_{i j}$, then $I \subset(1+\delta) B_{i_{j}}$. Ht follows, that $P_{k} \subseteq \bigcup_{j=1}^{n}(1+\delta) B_{i j}$, No $\frac{1}{2^{\beta}}=2^{k} \cdot\left(\frac{1}{2} \cdot \frac{1}{3^{k}}\right)^{\beta}=\sum_{i=1}^{2^{k}} p_{i}^{\beta} \leqslant \sum_{j=1}^{n}\left[(1+\delta) r_{i j}\right]^{\beta} \leqslant(1+\delta)^{\beta} \sum_{i=1}^{\infty} r_{i}^{\beta}$.
$\rho_{i}=$ radius of the it interval (hale) in the collection

Since $\delta>0$ is arbitrary, $\frac{1}{2^{\beta}} \leqslant \sum_{i=1}^{\infty} r_{i}^{\beta}$. Hence

$$
\frac{1}{2^{\beta}} \leqslant \inf \left\{\sum_{i=1}^{\infty} r_{i}^{\beta}: P \subseteq \bigcup_{i=1}^{\infty} B_{i}, \text { each } r_{i}<\varepsilon\right\}=\lambda_{\beta}^{(\varepsilon)}(P) \text {. }
$$

Since $\varepsilon>0$ is arbitrary, $\frac{1}{2^{\beta}} \leq \lim _{\varepsilon \rightarrow 0^{+}} \lambda_{\beta}^{(\varepsilon)}(P)=m_{p}(P)$. On the other hand, the argument in pat (a) shows that if $1 / 3^{k}<\varepsilon$ thew

$$
\lambda_{\beta}^{(\varepsilon)}(p) \leqslant \sum_{i=1}^{2^{k}} \rho_{i}^{\beta}=\sum_{i=1}^{2^{k}}\left(\frac{1}{2} \cdot \frac{1}{3^{k}}\right)^{\beta}=\frac{1}{2^{\beta}}\left(\frac{2}{3^{\beta}}\right)^{k}=\frac{1}{2^{\beta}} .
$$

Hence $m_{\beta}(P)=\frac{1}{2^{\beta}}$.
(d) $\operatorname{dim}_{\text {Hans }}(P)=\frac{\log (2)}{\log (3)}$.
\#2. Let $f_{1}=\left\{f_{1}, \ldots, f_{n}\right\}$ be a set of n memorable, veal-onhed functions on a probability space (X, \mathcal{A}, μ).
\Leftrightarrow Suppose that \mathcal{F} is an independent family. $f\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$,
then $F_{\left(f_{1}, \ldots, f_{n}\right)}\left(t_{1}, \ldots, t_{n}\right)=\mu\left(\bigcap_{i=1}^{n}\left\{x \in \bar{X}: f_{i}(x) \leq t_{i}\right\}\right)$

$$
\begin{aligned}
& =\prod_{i=1}^{n} \mu\left(\left\{x \in \mathbb{X}: f_{i}(x) \leq t_{i}\right\}\right) \quad \text { (by indepandex } \\
& =\prod_{i=1}^{n} F_{f_{i}}\left(t_{i}\right) .
\end{aligned}
$$

(\Leftarrow) Suppose that the cumulative joint distribution function for $\left(f_{1}, \ldots, f_{n}\right)$ satisfies $F_{\left(f_{1}, \ldots, f_{n}\right)}\left(t_{1}, \ldots, t_{n}\right) \stackrel{(*)}{=} \prod_{i=1}^{n} F_{f_{i}}\left(t_{i}\right) \quad$ for all $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$.
Define the (Bowel-) menurable transformation $T: \bar{X} \rightarrow \mathbb{R}^{n}$ by

$$
T(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right): \quad(x \in \bar{\Sigma})
$$

Let $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$ and $M_{i}=\left(-\infty, t_{i}\right]$ for $1 \leq i \leq n$. Then

$$
\begin{aligned}
\left(\mu T^{-1}\right)\left(M_{1} \times \ldots \times M_{n}\right) & =\mu\left(T^{-1}\left[M_{1} \times \ldots \times M_{n}\right]\right) \\
& =\mu\left(\left\{x \in \bar{X}: T(x) \in M_{1} \times \ldots \times M_{n}\right\}\right) \\
& =\mu\left(\bigcap_{i=1}^{n}\left\{x \in \bar{Z}: f_{i}(x) \leq t_{i}\right\}\right) \\
& =F_{\left(f_{1}, \ldots, f_{n}\right)}\left(t_{1}, \ldots, t_{n}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(M_{1} \times \ldots \times M_{n}\right) & =\left(\mu f_{1}^{-1}\right)\left(M_{1}\right) \cdot \ldots \cdot\left(\mu f_{n}^{-1}\right)\left(M_{n}\right) \\
& =\prod_{i=1}^{n} \mu\left(\left\{x \in \mathbb{Z}: f_{i}(x) \leq t_{i}\right\}\right) \\
& =\prod_{i=1}^{n} F_{f_{i}}\left(t_{i}\right) .
\end{aligned}
$$

lt follows then from (*) that μT^{-1} and $\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}$ are Bud memures 10.ts. on \mathbb{R}^{n} which agree on the class of sabiats of the form $I_{1} \times \ldots \times I_{n}$ where each $I_{i}=\left(-\infty, b_{i}\right]$ for same $b_{i} \in \mathbb{R}$. Let C denote the class of intervals of \mathbb{R} of the form $I=(-\infty, b]$ for come $b \in \mathbb{R}$. It is 10. pts. easy to see that C is $a \pi$-system:

$$
\left(-\infty, b_{1}\right] \cap\left(-\infty, b_{2}\right]=\left(-\infty, b_{1} \wedge b_{2}\right] \in C .
$$

Let D denote the collection of Bored sets $B_{1} \subseteq \mathbb{R}$ such that for 10 plo . any \sqrt{n}^{n} its from θ, say B_{1}, \ldots, B_{n}, we have the equality

$$
\mu T^{-1}\left(B_{1} \times \ldots \times B_{n}\right)=\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(B_{1} \times \ldots \times B_{n}\right)
$$

10pts. Claim: D is a λ-system.
Remark: Clearly $C \leq \&$. It will then follow from the claim and Dyakin's $\pi-\lambda$ theorem that $\&$ contains the σ-algebra 10 ph. generated by C. But clearly $\sigma(C)=B(\mathbb{R})$, so it will follow that $B(\mathbb{R}) \leq D$. That is, for all Bosch uts B_{1}, \ldots, B_{n} in \mathbb{R} we have

$$
\begin{aligned}
\mu\left(\bigcap_{i=1}^{n}\left\{x \in \mathbb{Z}: f_{i}(x) \in B_{i}\right\}\right) & =\mu \top^{-1}\left(B_{1} \times \ldots \times B_{n}\right) \\
& =\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(B_{1} \ldots \times B_{n}\right) \\
& =\prod_{i=1}^{n} \mu\left(\left\{x \in Z: f_{i}(x) \in B_{i}\right\}\right),
\end{aligned}
$$

and thus $f_{1}=\left\{f_{1}, \ldots, f_{n}\right\}$ is an independent family.
usps. Proof of Claim:
(i') Let $B_{1}=\mathbb{R}$ and $B_{2}, \ldots, B_{n} \in D$. Then for each $b \in \mathbb{R},(-\infty, b] \in \mathscr{D}$
po

$$
\mu T^{-1}\left((-\infty, b] \times B_{2} \times \ldots \times B_{n}\right)=\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left((-\infty, b] \times B_{2} \times \ldots \times B_{n}\right)
$$

Hence
\#1, sec. II. 1

$$
\begin{aligned}
\mu T^{-1}\left(\mathbb{R} \times B_{2} \times \ldots \times B_{n}\right) & \stackrel{\emptyset}{=} \lim _{m \rightarrow \infty} \mu T^{-1}\left((-\infty, m] \times B_{2} \times \ldots \times B_{n}\right) \\
& =\lim _{m \rightarrow \infty}\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left((-\infty, m] \times B_{2} \times \ldots \times B_{n}\right) \\
& =\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(\mathbb{R} \times B_{2} \times \ldots \times B_{n}\right)
\end{aligned}
$$

Since $B_{2}, \ldots, B_{n} \in D$ were arbitrary, $B_{1}=\mathbb{R} \in D$, by definition.
(ii') Suppose $B_{1} \in \otimes$ and let $B_{2}, \ldots, B_{n} \in D$. Then

$$
\begin{aligned}
\mu T^{-1}\left(\left(\mathbb{R}, B_{1}\right)\right. & \left.\times B_{2} \times \ldots \times B_{n}\right)=\mu T^{-1}\left(\mathbb{R} \times B_{2} \times \ldots \times B_{n}\right)-\mu T^{-1}\left(B_{1} \times B_{2} \times \ldots \times B_{n}\right) \\
& =\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(\mathbb{R} \times B_{2} \times \ldots \times B_{n}\right)-\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(B_{1} \times B_{2} \times \ldots \times B_{n}^{\prime}\right. \\
& =\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(\left(\mathbb{R}, B_{1}\right) \times B_{2} \times \ldots \times B_{n}\right)
\end{aligned}
$$

Consequently $\mathbb{R}, B_{1} \in D$.
(iii') Let $\left\{A_{k}\right\}_{k=1}^{\infty} \subseteq D$ with $A_{k} \cap A_{l}=\phi$ if $k \neq l$, and let $B_{2}, \ldots, B_{n} \in D$. Shew
$\# 1$ Sec. 11.1

$$
\begin{aligned}
\mu T^{-1}\left(\left(\bigcup_{k=1}^{\infty} A_{k}\right) \times B_{2} \times \ldots \times B_{n}\right) & \stackrel{\emptyset}{=} \lim _{K \rightarrow \infty} \mu T^{-1}\left(\left(\cup_{k=1}^{K} A_{k}\right) \times B_{2} \times \ldots \times B_{n}\right) \\
& =\lim _{k \rightarrow \infty} \bigcup_{k=1}^{K}\left(\mu T^{-1}\right)\left(A_{k} \times B_{2} \times \ldots \times B_{n}\right) \\
& =\lim _{K \rightarrow \infty} \bigcup_{k=1}^{K}\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(A_{k} \times B_{2} \times \ldots \times B_{n}\right) \\
& \left.=\lim _{K \rightarrow \infty}\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(\cup_{k=1}^{K} A_{k}\right) \times B_{2} \times \ldots \times B_{n}\right) \\
& =\left(\mu f_{1}^{-1} \times \ldots \times \mu f_{n}^{-1}\right)\left(\left(\cup_{k=1}^{\infty} A_{k}\right) \times B_{2} \times \ldots \times B_{n}\right)
\end{aligned}
$$

Since $B_{2}, \ldots, B_{n} \in D$ were arbitrary, the definition of D implies $\cup_{k=1}^{\infty} A_{k} \in \&$. Therefore A is a λ-rystan. This concludes the proof of the claim and hence the solution of problem 2 .
\#3. Let $f \in L^{2}(0,1)$.
(a) Suppose that $\hat{f}(n) \neq 0$ pol all $n \in \mathbb{Z}$. Yet $h \in L^{2}(0,1)$ and let N he a positive integer. Shew denoting $e_{n}(t)=e^{2 \pi i n t}$ for $n \in \mathbb{Z}, t \in(0,1)$, we have $S_{N}(h ; t)=\sum_{k=-N}^{N} \hat{h}(k) \underset{k}{e}(t)=\sum_{k=-N}^{N} \frac{\hat{h}(k)}{\hat{f}(k)} \hat{f}(k) \underset{k}{e}(t)=\sum_{k=-N}^{N} \frac{\hat{h}(k)}{\hat{f}(k)}(f * e)_{k}(t)$ $\therefore O p^{\text {s. }} \quad=f_{*}\left(\sum_{k=-N}^{N} \frac{\hat{h}(k)}{\hat{f}(k)} e_{k}\right)(t)$. Note that $g_{N}(t)=\sum_{k=-N}^{N} \frac{\hat{h}(k)}{\hat{f}(k)} e_{k}(t)$
10pts. is a trigonometric polynomial and hence belongs to $L^{2}(0,1)$. apo $S_{N}(h ; t)=\left(f * g_{N}\right)(t)$ for all $t \in(0,1)$ and $\left\|S_{N}(h)-h\right\|_{L^{2}(0,1)} 0$:opts as $N \rightarrow \infty$. (This is a consequence of Parsevala' identity; see the math 315 lecture notes on the L^{2} - theory of tonier series a Rudds' "Onociples of mathematical Anclyio, theorems 8.16 and 11.40 .) It follows that the 10 pts set of all convolution products $f_{*} g$, as g ranges over $L^{2}(0,1)$, is dense in $L^{2}(0,1)$.
(b) Suppose that the set of all convolution products $f_{*} g$, as granges cover $L^{2}(0,1)$, is dense in $L^{2}(0,1)$. Suppose $\hat{f}\left(n_{0}\right)=010 \mathrm{pls}$. for some $n_{0} \in \mathbb{Z}$. Then $\widehat{f_{* g}}\left(n_{0}\right)=\hat{f}\left(n_{0}\right) \hat{g}\left(n_{0}\right)=0$ for all 10 pts . $g \in L^{2}(0,1)$. For all $g \in L^{2}(0,1)$, we have hy Parscocilo' identity

$$
\left\|e_{n_{0}}-f * g\right\|_{L^{2}(0,1)}^{2}=1+\sum_{n \neq n_{0}}|-\widehat{f * g(n)}|^{2} \geq 1, \quad \text { 20 pts. }
$$

so the set $f * g$, as g ranges over $L^{2}(0,1)$, is not dense in $L^{2}(0,1)$, a contra-
\#4. (a) Suppose that there exists a function $d \in L^{\prime}\left(\mathbb{R}^{n}\right)$ such that $d * f=f$ for all $f \in L^{\prime}\left(\mathbb{R}^{n}\right)$. fr particular, $d * d=d$. If $\xi \in \mathbb{R}^{n}$ and $f \in L^{\prime}\left(\mathbb{R}^{n}\right)$, the Fourier transform of f at ξ is defined by $\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-i x \cdot \xi} d x$. At is cary to show that $\widehat{(f * g)(\xi)}=\hat{f}(\xi) \hat{g}(\xi)$ for all $f, g \in \mathbb{L}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\xi \in \mathbb{R}^{n}$. Hence $d * d=d$ implies $(\hat{d}(\xi))^{2}=(\widehat{d * d})(\xi)=\hat{d}(\xi)$ for all $\xi \in \mathbb{R}^{n}$ and hence, for each $\xi \in \mathbb{R}^{n}, \hat{d}(\xi)$ is either 0 a 1 . But $\xi \mapsto \hat{f}\left(\frac{z}{3}\right)$ is a continuous function on \mathbb{R}^{n} and satisfies $|\hat{f}(s)| \rightarrow 0$ as $\|s\| \rightarrow \infty$ when $f \in L^{\prime}\left(\mathbb{R}^{n}\right)$. At follows that $\hat{d}(\xi)=0$ for all $\xi \in \mathbb{R}^{n}$ or $\hat{d}(\xi)=1$ for all $\xi \in \mathbb{R}^{n}$, and clearly the record alternative is impossible since $|\hat{d}(s)| \rightarrow 0$ es $\| \xi \rightarrow \infty$. But then $\hat{d}(\xi)=0$ for all $\xi \in \mathbb{R}^{n}$ implies $d(x)=0$ a.e. by the unigneness theorem, so $f(x)=(d * f)(x)=0$ a.e. for all $f \in L^{\prime}\left(\mathbb{R}^{n}\right)$, a clear absurdity. Therefore, there in no $d \in L^{\prime}\left(\mathbb{R}^{n}\right)$ much that $d * f=f$ for all $f \in L^{\prime}\left(\mathbb{R}^{n}\right)$.
(b) for $R>0$ and $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n}$, define the Fejer kernel by

$$
K_{R}(\theta)=\frac{1}{(2 \pi R)^{n}} \int_{0}^{R} \ldots \int_{0}^{R}\left(\int_{-\rho_{1}}^{\rho_{1}} \cdots \int_{-\rho_{n}}^{\rho_{n}} e^{i\left(\theta_{1}, s_{1}+\cdots+\theta_{n} \xi_{n}\right)} d \xi_{n} \ldots \xi_{1}\right) d \rho_{1} \ldots d \rho_{n}
$$

[This kernel cm he motioned by looking at the C^{\prime}-means of the partial Fowler
integrals of $f \in L^{\prime}\left(\mathbb{R}^{n}\right): \quad \sigma_{R}(f ; x)=\frac{1}{R^{n}} \int_{0}^{R} \cdots \int_{0}^{R} S_{\left(\rho_{1} \cdots \cdots \rho_{n}\right)}(f ; x) d p_{1} \cdots d \rho_{n}$ $=\int_{\mathbb{R}^{n}} f(y) K_{R}(x-y) d y=\left(f * K_{R}\right)(x)$.] One proves the identities

$$
\begin{aligned}
K_{R}(\theta) & =\frac{1}{(2 \pi R)^{n}} \int_{0}^{R} \cdots \int_{0}^{R} \frac{2 \sin \left(\rho_{1} \theta_{1}\right)}{\theta_{1}} \cdot \ldots \cdot \frac{2 \sin \left(\rho_{n} \theta_{n}\right)}{\theta_{n}} d \rho_{1} \cdot \cdot d \rho_{n} \\
& =\left(\frac{2 \sin ^{2}\left(R \theta_{1} / 2\right)}{\pi R \theta_{1}^{2}}\right) \cdot \ldots \cdot\left(\frac{2 \sin ^{2}\left(R \theta_{n} / 2\right)}{\pi R \theta_{n}^{2}}\right)
\end{aligned}
$$

and the propentiso below follow as in the $n=1$ dimensional case (see HW set \#3, problem E):
(1) $\int_{\mathbb{R}^{n}} K_{R}(\theta) d \theta=1$ for all $R>0$.
(2) $K_{R}(\theta) \geq 0$ for all $R>0$ and all $\theta \in \mathbb{R}^{n}$.
(3) $\lim _{R \rightarrow \infty} \int_{\|\theta\|>\delta} K_{R}(\theta) d \theta=0$ for every $\delta>0$.

Claim: The requence of functions $\left\{K_{k}\right\}_{k=1}^{\infty} \subseteq L^{\prime}\left(\mathbb{R}^{n}\right)$ has the property that $K_{k} * f \rightarrow f$ in the $L^{\prime}\left(\mathbb{R}^{n}\right)$-nom for each $f \in L^{\prime}\left(\mathbb{R}^{n}\right)$.

Oroof of Chim: Let $f \in L^{\prime}\left(\mathbb{R}^{n}\right)$ and let $\varepsilon>0$. Denote $f_{y}(x)=f(x-y)$ for $x, y \in \mathbb{R}^{n}$ and obsecve thet $\left\|f-f_{y}\right\|_{L^{\prime}\left(\mathbb{R}^{n}\right)} \rightarrow 0$ as $y \rightarrow 0$. (Jhis is clar if f is a centinuens function of conpact support on \mathbb{R}^{n}, and the denity of anch functions in $L^{\prime}\left(\mathbb{R}^{n}\right)$ yields the result for general $f \in L^{\prime}\left(\mathbb{R}^{n}\right)$.) Therepre there is a $\delta>0$ auch that $\left\|f-f_{y}\right\|_{L^{\prime}\left(\mathbb{R}^{n}\right)}<\frac{\varepsilon}{2}$ por all $\|y\|<\delta$. Chose $R_{0}>0$ puch that $2\|f\|_{L^{\prime}\left(\mathbb{R}^{n}\right)} \int_{\|y\| \geq \delta} K_{R}(\theta) d \theta<\frac{\varepsilon}{2}$ por all $R \geqslant R_{0}$ (ef. property (3) of the figer kerrel). For $k \geq R$. we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|K_{k} * f(x)-f(x)\right| d x \stackrel{\text { Propergery }}{=} \int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} K_{k}(y) f(x-y) d y-\int_{\mathbb{R}^{n}} K(y) f(x) d y\right| d \\
& \leq \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} \int_{k}^{\text {Propety }}{ }^{(2)} K_{k}(y)|f(x-y)-f(x)| d y d x \\
& =\int_{\mathbb{R}^{n}}\left(\int_{\|y\|<\delta} K_{k}(y)|f(x-y)-f(x)| d y\right) d x+\int_{\mathbb{R}^{n}\|y\| \geq \delta}\left(\int_{k} K_{k}(y) \mid f(x-y)-f(x)\right) d y y^{\prime} \\
& =\int_{\|y\|<\delta}^{\text {Tonelli }} K_{k}(y)\left(\int_{\mathbb{R}^{n}}|f(x-y)-f(x)| d x\right) d y+\int_{\|y\| \geq \delta} K_{k}(y)\left(\int_{\mathbb{R}^{n}}|f(x-y)-f(x)| d x\right) d y \\
& \leq \int_{\|y\|<\delta} K_{k}(y)\left\|f-f_{y}\right\|_{L^{\prime}\left(\mathbb{R}^{\prime \prime}\right)} d y+\int_{\|y\| \geq \delta} K_{k}(y) 2\|f\|_{L^{\prime}\left(\mathbb{N}^{\prime \prime}\right)} d y
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{\varepsilon}{2} \int_{\|y\|<\delta} K_{k}(y) d y+2\|f\|_{L^{\prime}\left(\mathbb{R}^{n}\right)} \cdot \int_{\left\|_{y}\right\| \geqslant \delta} K_{k}(y) d y \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon . \\
& \text { Q.E.D. }
\end{aligned}
$$

