Mathematics 416

Final Exam Spring 2008

This is an open-textbook, open-notes test. That is, while solving the problems on this examination you may refer to your textbooks, Royden's *Real Analysis* and Karatzas and Shreve's *Brownian Motion and Stochastic Calculus*, or to the lecture notes you have taken for Math 416 this semester. Please solve any **three** of the following four problems and **circle** the number of each problem you want me to grade. Each problem is of equal value: 100 points. Thus, the total possible number of points on this examination is 300.

1. Let E denote a Borel subset of a separable metric space (X,d), let $m_{\alpha}(E)$ denote the Hausdorff

 α -dimensional measure of E, and let P denote the Cantor ternary set in the interval [0,1].

(a) Show that $\inf \{ \alpha : m_{\alpha}(E) = 0 \} = \sup \{ \beta : m_{\beta}(E) = \infty \}$.

(Note: The common value of the preceding infimum and supremum is called the Hausdorff dimension of the set E.)

(b) If $\alpha > \log(2) / \log(3)$, show that $m_{\alpha}(P) = 0$.

(c) If $\beta = \log(2) / \log(3)$, show that $m_{\beta}(P) = 1/2^{\beta}$.

(d) What is the Hausdorff dimension of P?

2. Let $f_1, ..., f_n$ be measurable real-valued functions on a probability space (X, \mathcal{A}, μ) . Prove or disprove: $\mathcal{F} = \{f_1, ..., f_n\}$ is an independent family if and only if the cumulative joint distribution function for the ordered n-tuple $(f_1, ..., f_n)$ satisfies

$$F_{(f_1,...,f_n)}(t_1,...,t_n) = F_{f_1}(t_1)...F_{f_n}(t_n)$$

for all $(t_1, ..., t_n) \in \mathbb{R}^n$.

3. (a) Let f ∈ L²(0,1) have the property that f(n) ≠ 0 for all integers n. Show that the set of all convolution products f * g, as g ranges over L²(0,1), is dense in L²(0,1).
5. (b) Let f ∈ L²(0,1) have the property that the set of all convolution products f * g, as g ranges over L²(0,1), is dense in L²(0,1). Show that f(n) ≠ 0 for all integers n.

4. (a) Show that there is no function $d \in L^1(\mathbb{R}^n)$ such that d * f = f for all $f \in L^1(\mathbb{R}^n)$. 5. (b) Show that there is a sequence of functions $\{d_k\}_{k=1}^{\infty} \subseteq L^1(\mathbb{R}^n)$ such that $d_k * f \to f$ in the $L^1(\mathbb{R}^n)$ -norm for each $f \in L^1(\mathbb{R}^n)$.

#1. (a) The desired conclusion, inf
$$\{\alpha : m_{\alpha}(E) = 0\} = \sup\{\beta : m_{\beta}(E) = \infty\}$$
,
easily follows from (1) and (2) below.
(1) If $m_{\alpha}(E) < \infty$ then $m_{\alpha}(E) = 0$ for all $\alpha > \alpha_0$.
(2) If $0 < m_{\alpha}(E)$ then $m_{\beta}(E) = \infty$ for all $\beta < \alpha_0$.
(3) If $0 < m_{\alpha}(E)$ then $m_{\beta}(E) = \infty$ for all $\beta < \alpha_0$.
(4) If $m_{\alpha}(E) < m_{\alpha}(E) < \infty$ and let $\alpha > \alpha_0$. Then to each sufficiently small $E > 0$, there corresponde a covering of open balls
 $\{B_i\}_{i=1}^{\infty}$ of E with each radius $r_i \in (0, E)$ and $\sum_{i=1}^{\infty} r_i^{\alpha_0} < m_{\alpha}(E) + 1$.
Jhen $\sum_{i=1}^{\infty} r_i^{\alpha} = \sum_{i=1}^{\infty} r_i^{\alpha-\alpha_0} \cdot r_i^{\alpha_0} < \sum_{i=1}^{\infty} r_i^{\alpha_0} <$

$$m_{\mathcal{A}}(E) = \lim_{\substack{k \to 0^+ \\ E \to 0$$

#1. (b) Legence
$$\alpha > \frac{\log(2)}{\log(3)}$$
; i.e. suppose $3^{N} > 2$. Deven $E > 0$,
choose $k \in \mathbb{N}$ such that $\frac{1}{3}k \circ < \varepsilon$. In all $k \ge k_{0}$, $\frac{2^{k}}{2^{k}}$ ideal
digivit intervals of length $\frac{1}{3^{k}}$ cover P . The intervals of these intervals
error all but a finite number of points of P . Therefore
 $\lambda_{\kappa}^{(E)}(P) \le \sum_{i=1}^{L} r_{i}^{(K)} = \sum_{i=1}^{L} \left(\frac{1}{2} \cdot \frac{1}{3^{k}}\right)^{\kappa} = 2^{k} \left(\frac{1}{2\cdot 3^{k}}\right)^{\kappa} = \frac{1}{2^{\kappa}} \left(\frac{\pi}{3^{\kappa}}\right)^{k} \rightarrow 0$
or $k \rightarrow \infty$. Thus $\lambda_{\kappa}^{(E)}(P) = 0$ for all $E > 0$ so $m_{\kappa}(P) = \lim_{\varepsilon \rightarrow 0^{+}} \lambda_{\kappa}^{(E)}(P) = 0$
(c) Legence $\rho = \frac{\log(2)}{\log(3)}$; is. suppose $3^{P} = 2$. It $E > 0$ and
let $\{B_{i}\}_{i=1}^{m}$ is a segure of open bells (i.e. open indervals) in $[0, 1]$ such
that $P = \bigcup_{i=1}^{D} B_{i}^{k}$ and $r_{i}^{*} = radius gB_{i}^{*} \in (0, \varepsilon)$ for all $i \ge 1$. Airce
 P is conject thre each ρ_{k} consists of the union of 2^{k} closed
intervals of length $\frac{1}{3^{k}}$ obtained at the k^{k} stage in the constructions
of the Conton set. Let $5 > 0$ and $kt (1+5)B_{ij}$ denote the dilate by
 $1+5$ of the ball B_{ij} about its center (i.e. midpoint). Choose $k \in \mathbb{N}$
sufficiently large so $\frac{1}{3^{k}} < 5 \cdot \min[r_{ij} : i = j = n]$. It follows
that $\frac{1}{3^{k}} + r_{ij} < (1+5)r_{ij}$ for all $1 \le j \le n$, so if one of the
closed intervals T of k strange T is the collection of 2^{k} inter-
rals generating P_{k} has momentally intersection with some ball
 B_{ij} , then $T = (1+5)B_{ij}$. It follows that $P_{k} \in \bigcup(1+5)B_{ij}$ so
 $\frac{1}{2^{p}} = 2^{k} \left(\frac{1}{2} \cdot \frac{1}{3^{k}}\right)^{p} = \sum_{i=1}^{m} \left[p_{i}^{k} \le \sum_{j=1}^{m} \left[(1+5)r_{ij} \right]^{p} \le (1+5)B_{ij} \le 0$
 $\frac{1}{2^{p}} = 2^{k} \left(\frac{1}{2} \cdot \frac{1}{3^{k}}\right)^{p} = \sum_{i=1}^{k} p_{i}^{k} \le \sum_{j=1}^{m} \left[(0+5)r_{ij} \right]^{p} \le (1+5)B_{ij} \le 0$
 $\frac{1}{2^{p}} = 2^{k} \left(\frac{1}{2} \cdot \frac{1}{3^{k}}\right)^{p} = \sum_{i=1}^{k} p_{i}^{k} \le \sum_{j=1}^{m} \left[(0+5)r_{ij} \right]^{p} \le (1+5)^{p} \sum_{i=1}^{m} P_{i}$.

•

.

(d)
$$\dim_{\text{Haus}}(P) = \frac{\log(2)}{\log(3)}$$
.

•

.

#2. Let
$$f_i = \{f_i, ..., f_n\}$$
 be a set of n measurable, real-valued functions)
on a probability space (Σ, Λ, μ) .
(=>) Suppose that \overline{f} is an independent family. If $(t_i, ..., t_n) \in \mathbb{R}^n$,
then $\overline{F}_{(f_{ij},...,f_n)}(t_{ij},...,t_n) = \mu\left(\bigcap_{i=1}^n \{x \in \Sigma : f_i(x) \leq t_i\}\right)$
 $= \frac{\pi}{i=1} \mu\left(\{x \in \Sigma : f_i(x) \leq t_i\}\right)$ (by independent
 $= \frac{\pi}{i=1} \overline{F}_{i}(t_i)$.

-9 d8.

•

$$\begin{array}{l} (\Leftarrow) \quad \text{ Suppose that the cumulative joint distribution function for } (f_{i},...,f_{n}) \\ \text{ satisfies } & F_{i} \quad (t_{i},...,t_{n}) \stackrel{(\texttt{w})}{=} \stackrel{\pi}{\pi} F_{i}(t_{i}) \quad \text{fr all } (t_{i},...,t_{n}) \in \mathbb{R}^{n} . \\ \\ & \text{ Define the (Bosel-) measurable transformation } T: X \rightarrow \mathbb{R}^{n} \text{ for } I \in \mathbb{R}^{n} . \\ & T(x) = (f_{i}(x),...,f_{n}(x)) \quad (x \in X) . \\ \\ & \text{ Vet } (t_{i},...,t_{n}) \in \mathbb{R}^{n} \text{ and } M_{i} = (-\infty,t_{i}] \text{ for } i \leq i \leq n . \text{ Jhen } \\ & (\mu T^{-1})(M_{i} \times ... \times M_{n}) = \mu (T^{-1}[M_{i} \times ... \times M_{n}]) \\ & = \mu (\{x \in X : T(x) \in M_{i} \times ... \times M_{n}\}) \\ & = F_{(f_{i},...,f_{n})} (t_{i},...,t_{n}) . \end{array}$$

.

10 pts.

On the other hand ,

$$(\mu f_{i}^{-i} \times \dots \times \mu f_{n}^{-i})(M_{i} \times \dots \times M_{n}) = (\mu f_{i}^{-i})(M_{i}) \cdot \dots \cdot (\mu f_{n}^{-i})(M_{n})$$

$$= \frac{m}{\pi} \mu (\{x \in \Sigma : f_{i}(x) \leq t_{i}\})$$

$$= \frac{m}{\pi} F_{i}(t_{i}) .$$

It follows then from (*) that $\mu T'$ and $\mu f_1' \times \ldots \times \mu f_n'' \to \omega$ Bird meanines on R which agree on the class of subsets of the form $T_1 \times \ldots \times T_n$ where each $T_i = (-\infty, b_i]$ for some $b_i \in \mathbb{R}$. Let C denote the class of intervals of R of the form $T = (-\infty, b]$ for some $b \in \mathbb{R}$. It is easy to see that C is a π -system: $(-\infty, b_i] \cap (-\infty, b_2] = (-\infty, b_i \wedge b_2] \in \mathbb{C}$.

Let
$$\mathcal{D}$$
 denote the collection of Borel sets $B_1 \subseteq \mathbb{R}$ such that for
ⁿ
ⁿ pt:. any Trets from \mathcal{D} , say $B_1, ..., B_n$, we have the equality
 $\mu T^{-1}(B_1 \times ... \times B_n) = (\mu f_1^{-1} \times ... \times \mu f_n^{-1})(B_1 \times ... \times B_n)$

10 pts. Claim: Disa 2- suptem.

la pts.

Remark : Clearly
$$G \subseteq \Theta$$
. It will then follow from the claim
and Dynkin's $\pi - \lambda$ theorem that Θ contains the σ -algebra
generated by G . But clearly $\sigma(G) = B(IR)$, so it will
follow that $B(IR) \subseteq \Theta$. That is, for all Borel sets $B_{1,...,S}$ in R
we have

$$\begin{split} \mu\left(\bigcap_{i=1}^{n} \left\{x \in \Sigma : f_{i}(x) \in B_{i}^{-1}\right\}\right) &= \mu^{T^{-1}}\left(B_{i}x \dots \times \mu f_{n}^{-1}\right)\left(B_{i} \dots \times B_{n}\right) \\ &= \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left(B_{i} \dots \times B_{n}\right) \\ &= \prod_{i=1}^{n} \mu\left(\left\{x \in \Sigma : f_{i}(x) \in B_{i}^{-1}\right\}\right), \\ \text{and then } J^{-} = \left\{f_{i}, \dots, f_{n}\right\} \text{ is an indegendent family.} \end{split}$$

$$\begin{split} \mu^{T^{-1}}\left(\left(x \otimes J_{n}\right) = R \text{ and } B_{n}, \dots, B_{n} \in \Theta. \text{ Jew for each } b \in R, (-\infty, b] \in \Theta \\ \mu^{T^{-1}}\left(\left(-\infty, b\right)\right) \times B_{i}x \dots \times B_{n}\right) = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left(\left(-\infty, b\right) \times B_{i}x \dots \times B_{n}\right). \\ \end{split}$$

$$\begin{split} Ibosce & a_{1, 5ec. H.1} \\ \mu^{T^{-1}}\left(R \times B_{n}x \dots \times B_{n}\right) = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left((-\infty, m] \times B_{n}x \dots \times B_{n}\right) \\ &= \lim_{m \to \infty} \left(\mu^{T^{-1}}(-\infty, m] \times B_{n}x \dots \times B_{n}\right) \\ = \lim_{m \to \infty} \left(\mu^{T^{-1}}x \dots \times \mu f_{n}^{-1}\right)\left((\infty, m] \times B_{n}x \dots \times B_{n}\right) \\ &= \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left(R \times B_{n}x \dots \times B_{n}\right) \\ \text{ divece } B_{n}, \dots, B_{n} \in \Theta \text{ note abilities} , B_{i} = R \in \Theta, \text{ by definition } \\ (ii') \quad \text{ furgence } B_{i} \in \Theta \text{ and } \text{ let } B_{n}, \dots, B_{n} \in \Theta. \text{ Jense} \\ \mu^{T^{-1}}\left((R \times B_{1}) \times B_{n}x \dots \times B_{n}\right) = \mu^{T^{-1}}\left(R \times B_{n}x \dots \times B_{n}\right) \\ &= \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left(R \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left(R \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left(R \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left(R \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left((R \times B_{n}x \dots \times B_{n}\right) - \mu^{T^{-1}}\left(B_{n} \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left((R \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left((R \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left((R \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left((R \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left((R \times B_{n}x \dots \times B_{n}\right) \\ = \left(\mu f_{i}^{-1}x \dots \times \mu f_{n}^{-1}\right)\left((R \times B_{n}x \dots \times B_{n}\right) \\ \text{ for exequently } R \times B_{n} \in \Theta. \end{split}$$

(iii') Let
$$\{A_k\}_{k=1}^{\infty} \in \mathcal{D}$$
 with $A_k \cap A_k = \phi$ if $k \neq k$, and
let $B_{k}, \dots, B_n \in \mathcal{D}$. Then
 $\mu T^{-1} \left(\begin{pmatrix} \cdots & A_k \end{pmatrix} \times B_{2^k} \dots \times B_n \end{pmatrix} \stackrel{d'}{=} \lim_{\substack{k \to \infty}} \mu T^{-1} \left(\begin{pmatrix} \cdots & A_k \end{pmatrix} \times B_{2^k} \dots \times B_n \right)$
 $= \lim_{\substack{k \to \infty}} \int_{k=1}^{k} (\mu T^{-1} (A_k \times B_{2^k} \dots \times B_n))$
 $= \lim_{\substack{k \to \infty}} \int_{k=1}^{k} (\mu T^{-1} (A_k \times B_{2^k} \dots \times B_n))$
 $= \lim_{\substack{k \to \infty}} \int_{k=1}^{k} (\mu T^{-1} \times \dots \times \mu T^{-1}) (A_k \times B_{2^k} \dots \times B_n)$
 $= \lim_{\substack{k \to \infty}} (\mu T^{-1} \times \dots \times \mu T^{-1}) ((\bigcup_{\substack{k=1}}^{k} A_k) \times B_{2^k} \dots \times B_n)$
 $= (\mu T^{-1} \times \dots \times \mu T^{-1}) ((\bigcup_{\substack{k=1}}^{k} A_k) \times B_{2^k} \dots \times B_n)$
 $= (\mu T^{-1} \times \dots \times \mu T^{-1}) ((\bigcup_{\substack{k=1}}^{m} A_k) \times B_{2^k} \dots \times B_n)$
Since $B_{2}, \dots, B_n \in \mathcal{D}$ were arbitrary, the definition of \mathcal{D} implies
 $\bigcup_{\substack{k=1}}^{\infty} A_k \in \mathcal{D}$. Therefore \mathcal{D} is a λ - system. This concludes the

`

#3. Let
$$f \in L^{2}(0,1)$$
.
(a) Suppose that $\hat{f}(n) \neq 0$ for all $n \in \mathbb{Z}$. Let $h \in L^{2}(0,1)$ and let
N be a positive integer. Then denoting $e_{n}(t) = e^{2\pi i n t}$ for $n \in \mathbb{Z}$, $t \in (0,1)$,
we have $S_{n}(h;t) = \sum_{k=-N}^{N} \hat{h}(k) e_{k}(t) = \sum_{k=-N}^{N} \frac{\hat{f}(k)}{\hat{f}(k)} f_{k}(t) e_{k}(t) = \sum_{k=-N}^{N} \frac{\hat{f}(k)}{\hat{f}(k)} f_{k}(t) e_{k}(t) = \sum_{k=-N}^{N} \frac{\hat{f}(k)}{\hat{f}(k)} f_{k}(t) e_{k}(t)$
is a trigonometric polynomial and tence belongs to $L^{2}(0,1)$. Also
 $S_{n}(h;t) = (f \star g_{n})(t)$ for all $t \in (0,1)$ and $\|S_{n}(h) - h\| \rightarrow 0$ into
 $N \rightarrow \infty$. (This is a consequence of Garavali identity; see the Meth
315 secture roles on the L^{2} theory of toxics acries on Ruddie "Inversels of
Methamatical Analysis, Hearings 8.16 and 11.40.) It follows that the
10 pts pt of all convolution products fix g, as g hanges over $L^{2}(0,1)$, is
dense in $L^{2}(0,1)$.
(b) Suppose that the set of all convolution products for g and

. •

(b) Auppose that the set of all convolution products
$$f \neq g$$
, as
granges over $L^{2}(0,1)$, is dense in $L^{2}(0,1)$. Suppose $\hat{f}(n_{0}) = 0$ 10 pts.
for some $n_{0} \in \mathbb{H}$. Then $\hat{f} \neq \hat{g}(n_{0}) = \hat{f}(n_{0})\hat{g}(n_{0}) = 0$ for all 10 pts.
 $g \in L^{2}(0,1)$. For all $g \in L^{2}(0,1)$, we have thy Parswerló identity
 $\|e_{n_{0}} - \hat{f} \neq g\|_{L^{2}(0,1)}^{2} = 1 + \sum_{n \neq n_{0}} |-\hat{f} \neq \hat{g}(n_{0})|^{2} \geq 1$, 20 pts.

so the set frag, as granges over L2(0,1), is not dense in L2(0,1), a contra-

#4. (a) Suppose that the suits a function
$$d \in L^{1}(\mathbb{R}^{n})$$
 such that
 $d * f = f$ for all $f \in L^{1}(\mathbb{R}^{n})$, the pasticular, $d * d = d$.
If $g \in \mathbb{R}^{n}$ and $f \in L^{1}(\mathbb{R}^{n})$, the towier transform of f at g is
 $defind by \hat{f}(g) = \int f(x)e^{ix \cdot g} dx$. It is every to also that
 $(f * g)(g) = \hat{f}(g)\hat{g}(g)$ for all $f, g \in L^{1}(\mathbb{R}^{n})$ and $g \in \mathbb{R}^{n}$. Hence
 $d * d = d$ implies $(\hat{d}(g))^{2} = (d + d)(*) = \hat{d}(g)$ for all $g \in \mathbb{R}^{n}$
and hence, for each $g \in \mathbb{R}^{n}$, $\hat{d}(g)$ is either $0 = 1$. But $g \mapsto f(g)$
is a continuous function on \mathbb{R}^{n} and satisfies $|\hat{f}(g)| \to 0 = 0$ $||g|| \to \infty$
when $f \in L^{1}(\mathbb{R}^{n})$. It follows that $\hat{d}(g) = 0$ for all $g \in \mathbb{R}^{n}$ or
 $\hat{d}(g) = 1$ for all $g \in \mathbb{R}^{n}$, and clearly the second alternative is
impossible since $|\hat{d}(g)| \to 0 = 0$ $||g|| \to \infty$. But then $\hat{d}(g) = 0$ for
 $ell g \in \mathbb{R}^{n}$ implies $d(x) = 0$ a.e. by the anipanent theorem, so
 $f(x) = (d * f)(x) = 0$ a.e. for all $f \in L^{1}(\mathbb{R}^{n})$, a clear divertity.
Iherefore, there is no $d \in L^{1}(\mathbb{R}^{n})$ such that $d * f = f$ for all $f \in L^{1}(\mathbb{R}^{n})$.
 (b) for $\mathbb{R} \to 0$ and $\Theta = (\Theta_{1}, \dots, \Theta_{n}) \in \mathbb{R}^{n}$, define the
figure kernel by
 $\mathbb{R}^{n} = \frac{1}{(2\pi \mathbb{R}^{n})} \int_{-\infty}^{\infty} \int_{0}^{\infty} (\int_{-\infty}^{n} \int_{0}^{\infty} e^{i(\theta,g+\dots+\theta,g_{n})} dg_{n} dg_{$

, ,

integrals of
$$f \in L^{1}(\mathbb{R}^{n})$$
: $\sigma'(f;x) = \frac{1}{\mathbb{R}^{n}} \int_{0}^{R} \cdots \int_{0}^{R} S_{(p_{1},\dots,p_{n})}(f;x) dp_{1} \cdots dp_{n}$

$$= \int f(y) K(x-y) dy = (f * K_{R})(x) .] \quad Ore proves the identities R^{n}$$

$$K_{R}(\theta) = \frac{1}{(2\pi R)^{n}} \int_{0}^{R} \cdots \int_{0}^{R} \frac{2\sin(p_{1}\theta_{1})}{\theta_{1}} \cdots \cdots \frac{2\sin(p_{n}\theta_{n})}{\theta_{n}^{1}} dp_{1} \cdots dp_{n}$$

$$= \left(\frac{2\sin^{2}(R\theta_{1}/2)}{\pi R\theta_{1}^{2}}\right) \cdots \cdot \left(\frac{2\sin^{2}(R\theta_{n}/2)}{\pi R\theta_{n}^{2}}\right)$$

and the properties below follow as in the n=1 dimensional case (see HW set #3, problem E):

(1) $\int_{R} K(\theta) d\theta = 1$ for all R > 0. IR^{n}

(2)
$$K_{R}(\theta) \ge 0$$
 for all $R > 0$ and all $\theta \in \mathbb{R}^{n}$.

(3)
$$\lim_{R \to \infty} \int K_{R}(\theta) d\theta = 0$$
 for every $S > 0$.
R $\to \infty ||\theta|| > S$

Claim: The requence of functions
$$\{K_k\}_{k=1}^{\infty} \in L'(\mathbb{R}^n)$$
 has
the property that $K_k * f \rightarrow f$ in the $L'(\mathbb{R}^n)$ -norm for
each $f \in L'(\mathbb{R}^n)$.

$$\begin{split} & \underbrace{\mathcal{P}_{\text{top}} \text{ of } \underbrace{\operatorname{Claim}}_{q} : \quad \text{if } f \in L'(\mathbb{R}^{n}) \text{ and } \text{ let } \varepsilon > 0. \quad \text{clunot} \\ & f_{y}(x) = f(x-y) \quad \text{for } x, y \in \mathbb{R}^{n} \text{ and } \text{ obsauce } \text{ tet } \|f - f_{y}\|_{L^{1}(\mathbb{R}^{n})} \to 0 \\ & \text{ as } y \to 0. \quad (J \text{ bin is clear if } f \text{ is a continuous function of congrect} \\ & \text{ support on } \mathbb{R}^{n}, \text{ and } \text{ the density of anch functions in } L'(\mathbb{R}^{n}) \text{ gields } \text{ the} \\ & \text{ support on } \mathbb{R}^{n}, \text{ and } \text{ the density of anch functions in } L'(\mathbb{R}^{n}) \text{ gields } \text{ the} \\ & \text{ support on } \mathbb{R}^{n}, \text{ and } \text{ the density of anch functions in } L'(\mathbb{R}^{n}) \text{ gields } \text{ the} \\ & \text{ support on } \mathbb{R}^{n}, \text{ and } \text{ the density of anch functions in } L'(\mathbb{R}^{n}) \text{ gields } \text{ the} \\ & \text{ support of } \mathbb{R}^{n}, \text{ and } \text{ the density of anch functions in } L'(\mathbb{R}^{n}) \text{ gields } \text{ the} \\ & \text{ support of } \mathbb{R}^{n}, \text{ and } \text{ the density of anch functions in } L'(\mathbb{R}^{n}) \text{ gields } \text{ the} \\ & \text{ support of } \mathbb{R}^{n}, \text{ and } \text{ the density of anch functions in } L'(\mathbb{R}^{n}) \text{ gields } \text{ the} \\ & \text{ support of } \mathbb{R}^{n}, \text{ and } \text{ for } \mathbb{R}^{n} \in \mathbb{R}^{n} \text{ and } \mathbb{R}^{n} \in \mathbb{R}^{n} \\ & \text{ for } \mathbb{R}^{n} \text{ for } \mathbb{R}^{n} \in \mathbb{R}^{n} \text{ of } \mathbb{R}^{n} \text{ for } \mathbb{R}^{n} = \int_{\mathbb{R}^{n}} L_{(\mathbb{R}^{n})} \|y\|_{2,S} \\ & (ef. property (a) ef \text{ the foirs hand }). \quad \text{ for } k \geq \mathbb{R}^{n} \text{ use have } \\ & \int_{\mathbb{R}^{n}} \mathbb{R}^{n} \mathbb{R}^{n} \\ & \quad \mathbb{R}^{n} \\ & \quad \mathbb{R}^{n} \mathbb{R}^{n} \\ & \quad \mathbb{R}^{n} \\ & \quad \mathbb{R}^{n} \mathbb{R}^{n} \\ & \quad \mathbb{R$$

• '

$$< \frac{\varepsilon}{2} \int K_{k}(y) dy + 2||f|| \cdot \int K_{k}(y) dy$$

$$L'(\mathbb{R}^{n}) ||y|| \ge 5$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon \cdot \qquad Q.E.D.$$

.

. .

ŗ