Mathematics 325

Homework 8

Due Date:

\qquad
Name: \qquad

Work exercise 3 on page 44.

3. Consider the diffusion equation $u_{t}=u_{x x}$ in the interval $(0,1)$ with $u(0, t)=u(1, t)=0$ and $u(x, 0)=1-x^{2}$. Note that this initial function does not satisfy the boundary condition at the left end, but that the solution will satisfy it for all $t>0$.
(a) Show that $u(x, t)>0$ at all interior points $0<x<1,0<t<\infty$.
(b) For each $t>0$, let $\mu(t)=$ the maximum of $u(x, t)$ over $0 \leq x \leq 1$. Show that $\mu(t)$ is a decreasing (i.e., nonincreasing) function of t. (Hint: Let the maximum occur at the point $X(t)$, so that $\mu(t)=$ $u(X(t), t)$. Differentiate $\mu(t)$, assuming that $X(t)$ is differentiable.)
(c) Draw a rough sketch of what you think the solution looks like (u versus x) at a few times. (If you have appropriate software available, compute it.)
(a) Fix $T>0$. Let

$$
Q_{T}=\{(x, t): \quad 0<x<1, \quad 0<t<T\}
$$

$m_{T}=$ minimum of $u(x, t)$ on the sidewrele and initial wall of Q,

$$
M_{T}=\text { maximum of } u(x, t) \quad . \quad \text { " } \quad \text {. } \quad . \quad \text {. } " i .
$$

initial wall By the strong maximum/minimum principle

$$
m_{T} \leq n(x, t) \leq M_{T}
$$

for all $(x, t) \in R_{T}$, with equality only if u is a constant function on $\overline{R_{T}}$. However $u(x, 0)=1-x^{2} \neq$ constant for $0 \leq x \leq 1$. Therefore $m_{T}<u(x, t)<M_{T}$ for all $(x, t) \in R_{T}$. It is clear that $m_{T}=0$ and $M_{T}=1$, and hence
(*) $0<u(x, t)<1$
for all $(x, t) \in R_{T}$. Because $T>0$ isalitiory, $(*)$ holds for all
points (x, t) such that $0<x<1$ and $0<t<\infty$.
(b) Jet $\bar{X}(t)$ denote the number in $[0,1]$ such that
$\mu(t)=u(\bar{X}(t), t)$, ie. the maximum of $u(x, t)$ an the horizontal line segment $L_{t}=\{(x, t): 0 \leq x \leq 1\}$ occurs at the point $(X(t), t)$.

(If the maximum of $u(x, t)$ on L_{t} occurs at more than one point, then take $(\underline{X}(t), t)$ as the left-most point on L_{t} where the maximum of $k(x, t)$ occurs.)

By the chain rule applied to $\mu(t)=u(\bar{Z}(t), t)$, we have

$$
\begin{aligned}
\frac{d u}{d t} & =\frac{\partial u}{\partial X} \cdot \frac{d X}{d t}+\frac{\partial u}{\partial t} \cdot \frac{\tilde{d t}^{1}}{d t} \\
& =\frac{\partial u}{\partial \bar{X}} \cdot \frac{d \bar{X}}{d t}+\frac{\partial^{2} u}{\partial x^{2}}
\end{aligned}
$$

since u is a solution to $u_{t}-u_{x x}=0$. But $\frac{\partial u}{\partial x}(\bar{x}(t), t)=0$ and $\frac{\partial^{2} u}{\partial x^{2}}(\bar{X}(t), t) \leq 0$ since the maximum of x on L_{t} occurs at $(\bar{X}(t), t)$. Consequently

$$
\frac{d \mu}{d t}=0 \cdot \frac{d x}{d t}+\frac{\partial^{2} u}{\partial x^{2}}=0 ;
$$

ie. μ is a nonincreasing function of t.
(c)

