Mathematics 325 Homework 8

Due Date:
Name:

Work exercise 3 on page 44.

- 3. Consider the diffusion equation $u_t = u_{xx}$ in the interval (0, 1) with u(0, t) = u(1, t) = 0 and $u(x, 0) = 1 x^2$. Note that this initial function does not satisfy the boundary condition at the left end, but that the solution will satisfy it for all t > 0.
 - (a) Show that u(x, t) > 0 at all interior points $0 < x < 1, 0 < t < \infty$.
 - (b) For each t > 0, let $\mu(t) =$ the maximum of u(x, t) over $0 \le x \le 1$. Show that $\mu(t)$ is a decreasing (i.e., nonincreasing) function of t. (*Hint*: Let the maximum occur at the point X(t), so that $\mu(t) = u(X(t), t)$. Differentiate $\mu(t)$, assuming that X(t) is differentiable.)
 - (c) Draw a rough sketch of what you think the solution looks like (u versus x) at a few times. (If you have appropriate software available, compute it.)

(a) fix T>0. Let

T Side walls

$$\mathcal{R}_{T} = \left\{ (x,t): o < x < I, o < t < T \right\}$$

By the strong maximum/minimum principle

 $m_T \leq u(xt) \leq M_T$

for all $(x,t) \in R_+$, with equality only if u is a constant function on \overline{R}_+ . However $u(x,o) = 1-x^2 \not\equiv constant$ for $o \not= x \not= 1$. Therefore $m_+ < u(x,t) < M_+$ for all $(x,t) \in R_+$. It is clear that $m_+ = 0$ and $M_+ = 1$, and hence

(*) 0 < u(x,6) < 1

for all $(x,t) \in \mathbb{R}_T$. Because T > 0 is arbitrary, (*) holds for all points (x,t) such that 0 < x < 1 and $0 < t < \infty$.

(b) Let X(t) denote the number in [0,1] such that $\mu(t) = u(X(t), t)$, i.e. the maximum of u(x,t) on the horizontal line segment $L_t = \{(x,t): 0 \le x \le 1\}$ occurs at the point (X(t),t).

(If the maximum of u(x,t) on L_t occurs at more than one point, then take $(\Sigma(t),t)$ as the left-most point on L_t where the maximum of u(x,t) occurs.)

By the chain rule applied to $\mu(t) = u(X(t), t)$,

we have

$$\frac{d\mu}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial t} \cdot \frac{dt}{dt}$$

$$= \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial x^2}$$

since u is a solution to $u_t - u_{xx} = 0$. But $\frac{\partial u}{\partial x}(X(t), t) = 0$ and $\frac{\partial^2 u}{\partial x^2}(X(t), t) = 0$ since the maximum of u on L_t occurs at (X(t), t). Consequently $\frac{\partial u}{\partial t} = 0 \cdot \frac{\partial X}{\partial t} + \frac{\partial^2 u}{\partial x^2} = 0;$

i.e. μ is a nonincreasing function of t.

