Mathematics 325

Homework 9
Due Date: \qquad
Name: \qquad
Work exercise 2 on page 50 in Strauss.

1. Solve the diffusion equation with the initial condition

$$
\phi(x)=1 \quad \text { for }|x|<l \quad \text { and } \quad \phi(x)=0 \quad \text { for }|x|>l .
$$

Write your answer in terms of $\mathscr{E r f}(x)$.
2. Do the same for $\phi(x)=1$ for $x>0$ and $\phi(x)=3$ for $x<0$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{t}-k u_{x x}=0 \text { in }-\infty<x<\infty, 0<t<\infty, \\
u(x, 0)=\varphi(x)=\left\{\begin{array}{ccc}
1 & \text { if } x>0, \\
3 & \text { if } x<0 .
\end{array}\right. \\
\therefore u(x, t)=\frac{1}{\sqrt{4 k \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \varphi(y) d y
\end{array}\right. \\
& =\frac{1}{\sqrt{4 k \pi t}} \int_{-\infty}^{0} 3 e^{-\frac{(x-y)^{2}}{4 k t}} d y+\frac{1}{\sqrt{4 k \pi t}} \int_{0}^{\infty} 1 e^{-\frac{(x-y)^{2}}{4 k t}} d y
\end{aligned}
$$

Let $p=\frac{y-x}{\sqrt{4 k t}}$. Then $d p=\frac{d y}{\sqrt{4 k t}}$.

$$
\therefore u(x, t)=\int_{-\infty}^{-\frac{x}{\sqrt{4 R}}} \frac{3}{\sqrt{\pi}} e^{-p^{2}} d p+\int_{-\frac{x}{\sqrt{4 k}}}^{\infty} \frac{1}{\sqrt{\pi}} e^{-p^{2}} d p
$$

Note that $\operatorname{Erf}(w)=\frac{2}{\sqrt{\pi}} \int_{0}^{w} e^{-p^{2}} d p=\frac{2}{\sqrt{\pi}}\left(\int_{-\infty}^{w} e^{-p^{2}} d p-\int_{-\infty}^{0} e^{-p^{2}} d p\right)=\frac{2}{\sqrt{\pi}} \int_{-\infty}^{w} e^{-p^{2}} d p-1$.
Therefore $\int_{-\infty}^{w} e^{-p^{2}} d p=\frac{\sqrt{\pi}}{2}\left(1+E_{r} f(w)\right)$. A similar argument shows that

$$
\begin{aligned}
\int_{w}^{\infty} e^{-p^{2}} d p & =\frac{\sqrt{\pi}}{2}(1-\operatorname{Erf}(w)) . \text { Therefore } \\
u(x, t) & =\frac{3}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{2}\left(1+\operatorname{Erf}\left(\frac{-x}{\sqrt{4 k t}}\right)\right)+\frac{1}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{2}\left(1-\operatorname{Erf}\left(\frac{-x}{\sqrt{4 k t}}\right)\right) \\
& =2+\operatorname{Erf}\left(\frac{-x}{\sqrt{4 k t}}\right) \\
& =2-\operatorname{Erf}\left(\frac{x}{\sqrt{4 k t}}\right) .
\end{aligned}
$$

