\qquad

You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 6 of the following 7 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Find the area of the region bounded by the curves $y=x^{3}-1$ and $y=x-1$. Be sure to sketch a graph first!

$$
\begin{aligned}
\text { Area } & =\int_{-1}^{0}\left[\left(x^{3}-1\right)-(x-1)\right] d x+\int_{0}^{1}\left[(x-1)-\left(x^{3}-1\right)\right] d x \\
& =\int_{-1}^{0}\left(x^{3}-x\right) d x+\int_{0}^{1}\left(x-x^{3}\right) d x \\
& =\left[\frac{1}{4} x^{4}-\frac{1}{2} x^{2}\right]_{-1}^{0}+\left[\frac{1}{2} x^{2}-\frac{1}{4} x^{4}\right]_{0}^{1} \\
& =\left[0-\left(\frac{1}{4}-\frac{1}{2}\right)\right]+\left[\left(\frac{1}{2}-\frac{1}{4}\right)-0\right] \\
& =\frac{1}{4}+\frac{1}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

2. Suppose $z=5 x \ln \left(x^{2}+y\right)$. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. Do not simplify.

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=z_{x}=(5)\left(\ln \left(x^{2}+y\right)\right)+(5 x)\left(\frac{1}{x^{2}+y}\right)(2 x) \\
& \frac{\partial z}{\partial y}=z_{y}=(0)\left(\ln \left(x^{2}+y\right)\right)+(5 x)\left(\frac{1}{x^{2}+y}\right)(1)
\end{aligned}
$$

3. Find and classify the critical points of $f(x, y)=x^{3}+y^{3}-x y$.

$$
\begin{array}{ll}
f x=3 x^{2}-y=0 \rightarrow y=3 x^{2} \\
f y=3 y^{2}-x=0 & \\
f\left(3 x^{2}\right)^{2}-x=0 \\
f x x=6 x & 3\left(9 x^{4}\right)-x=0 \\
f x y=-1 & 27 x^{4}-x=0 \\
f_{y} y=6 y & x\left(27 x^{3}-1\right)=0 \\
\text { crit pts : } & \\
& \\
& \\
& x=0 \rightarrow y=0 \\
D(x, y)=(6 x)(6 y)-(-1)^{2} & \\
=36 x y-1 &
\end{array}
$$

$D(0,0)=-1<0$, so $(0,0)$ is a saddle point

$$
D\left(\frac{1}{3}, \frac{1}{3}\right)=36\left(\frac{1}{9}\right)-1>0
$$

$f_{x x}\left(\frac{1}{3}, \frac{1}{3}\right)=6\left(\frac{1}{3}\right)>0$, so $\left(\frac{1}{3}, \frac{1}{3}\right)$ is a minimum.
4. The demand functions for two products are given by $D_{1}=\frac{100}{p_{1} \sqrt{p_{2}}}$ and $D_{2}=\frac{500}{p_{2} \sqrt[3]{p_{1}}}$, where p_{1} and p_{2} are the respective prices of the products. Are the two products competitive, complementary, or neither? (show work!) Give an example of two products that might behave in this way.

$$
\begin{aligned}
& D_{1}=100 p_{1}^{-1} p_{2}^{-1 / 2} \\
& \partial D_{1} / 2 p_{2}=-50 p_{1}^{-1} p_{2}^{-3 / 2} \\
& D_{2}=500 p_{2}^{-1} p_{1}^{-1 / 3} \\
& \partial D_{2} / \partial p_{1}=\frac{-500}{3} p_{2}^{-1} p_{1}^{-4 / 3}
\end{aligned}
$$

these are both negative, so (since $p_{1}, p_{2}>0$)
5. A computer company has a monthly advertising budget of $\$ 60,000$. Its marketing department estimates that if x dollars are spent each month on advertising in newspapers and y dollars per month on television advertising, then the monthly sales will be given by $S=90 x^{\frac{1}{4}} y^{\frac{3}{4}}$ dollars. If the profit is 10% of sales, less the advertising cost, determine how to allocate the advertising budget in order to maximize the monthly profit.

$$
\begin{aligned}
& x+y=60000 \leftarrow \text { constraint } \\
& \text { profit }=P=10 \% \text { (sales)-advertising cost } \\
& p=9 x^{1 / 4} y^{3 / 4}-60000 \leftarrow \text { optimize this. } \\
& \begin{aligned}
& F(x, y, \lambda)=9 x^{1 / 4} y^{3 / 4}-60000-\lambda(x+y-60000) \\
& F x=\frac{9}{4} x^{-3 / 4} y^{3 / 4}-\lambda=0 \lambda=\frac{9}{4} x^{-3 / 4} y^{+3 / 4}=\frac{27}{4} x^{1 / 4} y^{-1 / 4} \\
& \begin{array}{ll}
F y=\frac{27}{4} x^{1 / 4} y^{-1 / 4}-\lambda=0 & \frac{9}{4} y=\frac{27}{4} x \\
F_{\lambda}=-x-y+60000=0 & y=3 x \\
& -x-3 x+60000=0 \\
& 4 x=60000 \\
& x=15000, y=45000
\end{array}
\end{aligned} .
\end{aligned}
$$

6. Solve $\int_{-\infty}^{-2} \frac{1}{(x+1)^{3}} d x$.

$$
\begin{aligned}
\int_{-\infty}^{-2}(x+1)^{-3} d x & =\lim _{n \rightarrow-\infty} \int_{1}^{-2}(x+1)^{-3} d x \\
& =\lim _{n \rightarrow-\infty}\left[\frac{(x+1)^{-2}}{-2}\right]_{n}^{-2} \\
& =\lim _{n \rightarrow-\infty}\left(\frac{(-1)^{-2}}{2}-\frac{(n+1)^{-2}}{2}\right) \\
& =\lim _{n \rightarrow-\infty}\left[-\frac{1}{2}+\frac{1}{2(n+1)^{2}}\right] \quad \rightarrow \begin{array}{l}
\text { square large negative, } \\
\text { we get a big positive } \\
\text { in denom. } \\
\text { term } \rightarrow 0
\end{array} \\
& =-1 / 2 \quad
\end{aligned}
$$

7. Match the level curves with the corresponding surface graphs below:

Surface A matches Level Curve VI Surface B matches Level Curve III Surface C matches Level Curve II

Surface D matches Level Curve IV
Surface E matches Level Curve I
Surface F matches Level Curve $\bar{\square}$

IV

VI

