You have 60 minutes to complete this test. You must *show all work* to receive full credit. Work any 7 of the following 8 problems. Clearly **CROSS OUT** the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. If you have any questions, please come to the front and ask.

1. Using the *definition* of the derivative, find f'(x) if $f(x) = \sqrt{x-4}$.

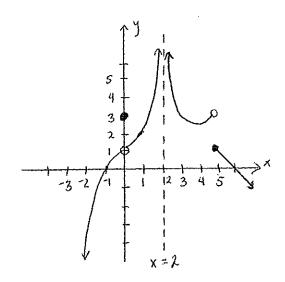
2. Evaluate the following limits. If any of them do not exist, EXPLAIN why not ("because it's undefined" and "denominator is zero" are not sufficient explanations).

(a)
$$\lim_{x \to 3} \frac{x^2 + 2x + 1}{x + 3}$$

(b)
$$\lim_{x\to 4} \frac{x-4}{\sqrt{x}-2}$$

(c)
$$\lim_{x\to 2^+} \frac{1}{\sqrt{x^2-4}}$$

- 3. The total cost of producing x packages of cookies is $C(x) = \frac{1}{20}x^2 + 3x + 33$ dollars. All x packages will be sold if the price is set at $p(x) = \frac{1}{5}(45 x)$ dollars per package.
 - a) Find an equation for profit when x packages of cookies are produced and sold.
 - b) *Estimate* the profit gained from the production and sale of the 11th package.
 - c) Find the *actual* profit from the 11th package.


4. Find f'(x) (do not simplify!) if:

a)
$$f(x) = \frac{x^2 - 3x + 2}{2x^2 - 5x + 1}$$

b)
$$f(x) = -\frac{x^2}{16} + \frac{2}{x} - x^{\frac{3}{2}} + \frac{1}{3x^2} + \frac{x}{3}$$

5. Find the equation of the line tangent to the graph of the function $f(x) = (3x+1)(2x^2-4)(5x^3+2x-1)$ at the point where x = 0.

6. Consider the graph of the function f(x) given below.

- (a) For what values of x is f(x) discontinuous?
- (b) Find $\lim_{x\to -1} f(x)$.
- (c) Find $\lim_{x\to 0} f(x)$.
- (d) Find $\lim_{x\to 2} f(x)$.
- (e) Find $\lim_{x\to 5^-} f(x)$.
- (f) Find $\lim_{x\to 5^+} f(x)$.

7. Carefully graph the function
$$f(x) = \begin{cases} 3 & \text{if } x \le 0 \\ x^2 + 2 & \text{if } 0 < x < 2 \text{. Does this } \\ -2x + 10 & \text{if } 2 \le x \end{cases}$$
 function have any discontinuities, and if so where?

8. A bakery can produce small wedding cakes at a cost of \$80 apiece. Sales figures indicate that if the cakes are sold for x dollars each, approximately 300 - x cakes will be sold during the May-September wedding season. Find an equation for *profit*, and determine the price and number of cakes that will maximize profit. What will be the maximum profit?