\qquad

You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 7 of the following 8 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. If you have any questions, please come to the front and ask.

1. Using the definition of the derivative, find $f^{\prime}(x)$ if $f(x)=2 x^{3}-2 x^{2}+4$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[2(x+h)^{3}-2(x+h)^{2}+4\right]-\left[2 x^{3}-2 x^{2}+4\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{2\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-2\left(x^{2}+2 x h+h^{2}\right)+4-2 x^{3}+2 x^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 x^{2} h+6 x h^{2}+2 h^{3}-4 x h-2 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}\left(6 x^{2}+6 x h+2 h^{2}-4 x-2 h\right)=6 x^{2}-4 x
\end{aligned}
$$

2. Evaluate the following limits. If any of them do not exist, EXPLAIN why not ("because it's undefined" and "denominator is zero" are not sufficient explanations).
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}+1}=\frac{1-3+2}{1+1}=\frac{0}{2}=0$
(b) $\lim _{x \rightarrow-2^{+}} \frac{2 x}{4-x^{2}}$ fill in $x=-2$, get $\frac{-2}{0}$, so use chart:

$$
=-\infty
$$

(c) $\lim _{x \rightarrow 0} \frac{(x+2)^{2}-4}{x}=\lim _{x \rightarrow 0} \frac{x^{2}+4 x+4-4}{x}$

x	y
-1	$-2 / 3$
-1.5	$-3 / 1.75=-12 / 7$
-1.9	$-3.8 / 0.39 \approx 9.74$
-1.99	$-\frac{3.98}{0.0399} \approx-99.75$

filliniget
3. The total cost for a manufacturer to produce q units of a product is $C(q)=\frac{1}{6} q^{3}+642 q+400$ dollars. The current level of production is 4 units. Estimate the amount by which the manufacturer should decrease production in order to reduce the total cost by $\$ 130$.
If q changes by Δq, then c changes by $c^{\prime}(q) \Delta q$.

$$
\Delta c \approx c^{\prime}(4) \Delta q
$$

cost should go down $\$ 130$, so we want to find Δq so that $-130=C^{\prime}(4) \Delta g$.

$$
\begin{aligned}
& c^{\prime}(q)=\frac{1}{2} q^{2}+642 \\
& c^{\prime}(4)=\frac{1}{2}(16)+642=650 . \quad \text { (If q goes from } 4 \text { to } 5 \text {, c goes up } 680 . \\
& -130=650 \Delta q \\
& \frac{-130}{650}=\Delta q . \quad \Delta q=\frac{-1}{5} . \quad \begin{array}{l}
\text { Production should be decreased } \\
\text { by } 1 / 5 .
\end{array}
\end{aligned}
$$

4. Find y^{\prime} for the following functions (do not simplify) :
a)

$$
\begin{aligned}
& y=(\sqrt{x}-3 x+1)(\sqrt[4]{x}-2 \sqrt{x})=\left(x^{1 / 2}-3 x+1\right)\left(x^{1 / 4}-2 x^{1 / 2}\right) \\
& y^{\prime}=\left(\frac{1}{2} x^{-1 / 2}-3\right)\left(x^{1 / 4}-2 x^{1 / 2}\right)+\left(x^{1 / 2}-3 x+1\right)\left(\frac{1}{4} x^{-3 / 4}-x^{-1 / 2}\right)
\end{aligned}
$$

b) $y=\frac{5 x^{-4}+x^{3}+7}{3 x^{2}+x-2}$

$$
y^{\prime}=\frac{\left(-20 x^{-5}+3 x^{2}\right)\left(3 x^{2}+x-2\right)-\left(5 x^{-4}+x^{3}+7\right)(6 x+1)}{\left(3 x^{2}+x-2\right)^{2}}
$$

5. A manufacturer sells all q units of a product that are produced. Suppose the price of the product is $\$ 16$ per unit, fixed costs for production total $\$ 10,000$, and variable cost is given by $8 q$. How many units must be produced in order for the manufacturer to break even?

To break even, Revenue $=$ Total cost

$$
\begin{aligned}
& (\text { price })(\text { quantity })=\text { variable cost }+ \text { fixed cost } \\
& (16)(q)=8 q+10000 \\
& 8 q=10000 \\
& q=\frac{10000}{8}=1250
\end{aligned}
$$

produce 1250 units in order to breakeven.
6. Find the equation of the line tangent to $f(x)=\frac{7 x^{3}+x}{2 \sqrt{x}}$ at the point where $x=1$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(21 x^{2}+1\right)(2 \sqrt{x})-\left(7 x^{3}+x\right)\left(x^{-1 / 2}\right)}{(2 \sqrt{x})^{2}} \\
& m=f^{\prime}(1)=\frac{(22)(2)-(7+1)(1)}{(2)^{2}}=\frac{44-8}{4}=9
\end{aligned}
$$

point: $x=1, y=\frac{7+1}{2}=4 \quad(1,4)$
line: $y-4=9(x-1)$ or $y=9 x-9+4$

$$
y=9 x-5
$$

7. Consider the graph of the function $f(x)$ given below.
a) Find $\lim _{x \rightarrow 1} f(x)=2$
b) Find $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$
c) Find $\lim _{x \rightarrow 2^{-}} f(x)=2$
d) Find $\lim _{x \rightarrow 2} f(x)$. $\triangle N E$
e) Find $\lim _{x \rightarrow-1} f(x)=2$
f) Find $\lim _{x \rightarrow-\infty} f(x)=-2$

8. Fully discuss the continuity of the function $f(x)=\left\{\begin{array}{lll}\frac{3 x}{x-1} & \text { if } & x \leq 2 \\ x+2 & \text { if } & x>2\end{array}\right.$.
for $x \leq 2, f(x)=\frac{3 x}{x-1}$. This is discontinuous at $x=1$.
for $x>2, f(x)=x+2$. This is con tinuous for all relevant x.
we still need to check for continuity at $x=2$. There is a point at $\frac{3(2)}{2-1}=\frac{6}{1}=6, \quad(2,6)$
And there is a hole at $2+2=4, \quad(2,4)$.
The point ε hole do NOT join up.
Overall f is continuous for all $x \neq 1,2$.
OR f is continuous on $(-\infty, 1) \cup(1,2) \cup(2, \infty)$
OR f is discontinuous at $x=1, x=2$, but continuous everywhere else.
