\qquad

You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 7 of the following 8 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. If you have any questions, please come to the front and ask.

1. Using the definition of the derivative, find $f^{\prime}(x)$ if $f(x)=\frac{1}{x-2}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{\frac{x+h-2}{h}}-\frac{1}{x-2} \\
& =\lim _{h \rightarrow 0}\left(\frac{(x-2)-(x+h-2)}{(x+h-2)(x-2)}\right)\left(\frac{1}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{-h}{(x+h-2)(x-2)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+h-2)(x-2)} \\
& =\frac{-1}{(x-2)^{2}}
\end{aligned}
$$

2. Evaluate the following limits. If any of them do not exist, EXPLAIN why not ("because it's undefined" and "denominator is zero" are not sufficient explanations).
(a) $\lim _{x \rightarrow 4} \frac{9-x}{3-\sqrt{x}}=\frac{9-4}{3-\sqrt{4}}=\frac{5}{1}=5$
(b) $\lim _{x \rightarrow 2^{+}} \frac{x+1}{x-2}$ fill in, get $\frac{3}{0}$, mustuse chart:

$$
\begin{aligned}
& \text { as } x \rightarrow 2^{+}, y \rightarrow \infty . \\
& \lim _{x \rightarrow 2^{+}} \frac{x+1}{x-2}=\infty
\end{aligned}
$$

x	y
3	$y / 1=4$
2.5	$3.5 / 5=7$
2.1	$3.1 / 1=31$
2.01	$3.01 \%=301$

(c) $\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x^{2}+3 x+2}=\lim _{x \rightarrow-2} \frac{(x+2)(x-3)}{(x+2)(x+1)}=\lim _{x \rightarrow-2} \frac{x-3}{x+1}$

$$
=\frac{-5}{-1}=5
$$

3. The supply of a product is given by $S(p)=p-10$ and the demand is given by $D(p)=\frac{5600}{p}$ when the price is p.
a) Find the equilibrium price and the corresponding number of units supplied

$$
\begin{array}{lll}
\text { and demanded. } & \leftrightarrows S(p)=D(p) & S(80)=80-10=70 \text { units } \\
p-10=\frac{5600}{p} & (p-80)(p+70)=0 & D(80)=\frac{5600}{80}=70 \text { units } \\
p^{2}-10 p=5600 & p=80 & \\
p^{2}-10 p-5600=0 & p=-70 \mathrm{No}
\end{array}
$$

b) Draw the supply and demand curves on the given set of axes.

c) Where does the supply curve cross the p-axis? Describe the economic significance of this point.

$$
S(p)=0=p-10 \text { at } p=10
$$

The point $(10,0)$ on the supply curve means that if the price is $\$ 10$, no units wIll be supplied. $\$ 10$ is the minimum price to support production of this product.
4. Find y^{\prime} for the following functions (do not simplify) :

$$
\begin{aligned}
& \text { a) } y=\left(x^{3}-2 x+3\right)\left(x^{-2}+4 x^{-3}\right) \\
& y^{\prime}=\left(3 x^{2}-2\right)\left(x^{-2}+4 x^{-3}\right)+\left(x^{3}-2 x+3\right)\left(-2 x^{-3}-12 x^{-4}\right) \\
& \text { b) } y=x \sqrt{x}+\frac{4}{3 x^{2}}=x^{3 / 2}+\frac{4}{3} x^{-2} \\
& y^{\prime}=\frac{3}{2} x^{1 / 2}-\frac{8}{3} x^{-3}
\end{aligned}
$$

5. Suppose the total cost to produce x units of a product is $C(x)=\frac{1}{3} x^{2}+65$.
a) Use marginal analysis to estimate the cost to produce the 7 th unit.

$$
\begin{aligned}
& c^{\prime}(x)=\frac{2}{3} x \\
& \text { cost to produce 7thunit } \approx c^{\prime}(6) \\
& \approx \frac{2}{3}(6) \\
& \approx \$ 4
\end{aligned}
$$

b) What is the actual cost to produce the 7 th unit?

Actual cost to produce 7 th unit $=C(7)-C(6)$

$$
\begin{aligned}
& =\left(\frac{49}{3}+65\right)-\left(\frac{36}{3}+65\right) \\
& =\frac{13}{3}, \text { about } \$ 4.33
\end{aligned}
$$

6. Find the equation of the line tangent to $f(x)=\frac{\sqrt{x}}{x+1}$ at the point where $x=4$.
point: $x=4$

$$
(4,2 / 5)
$$

$$
y=\frac{\sqrt{4}}{4+1}=\frac{2}{5}
$$

Slope:

$$
\begin{aligned}
& \text { Slope: } f^{\prime}(x)=\frac{\left(\frac{1}{2} x^{-1 / 2}\right)(x+1)-(\sqrt{x})(1)}{(x+1)^{2}} \\
& m=f^{\prime}(4)=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{4}}\right)(4+1)-(\sqrt{4})}{(4+1)^{2}}=\frac{\frac{5}{4}-2}{25}=\frac{-\frac{3}{4}}{25} \\
& m=\frac{-3}{100} \\
& \underline{\text { line : } \quad y} \begin{aligned}
y & =\frac{-3}{100} x+\frac{-3}{100}(x-4) \\
y & =\frac{-3}{100} x+\frac{3}{25}
\end{aligned}
\end{aligned}
$$

7. Consider the graph of the function $f(x)$ given below.
(a) Find $\lim _{x \rightarrow-2^{-}} f(x)=3$
(b) Find $\lim _{x \rightarrow-2^{+}} f(x)=-\infty$
(c) Find $\lim _{x \rightarrow-2} f(x)=?$ DNE
(d) Find $\lim _{x \rightarrow 0} f(x)=-2$
(e) Find $\lim _{x \rightarrow 4} f(x)=-2$
(f) Find $\lim _{x \rightarrow-\infty} f(x)=\infty$

8. Sketch the graph of the function $f(x)=\left\{\begin{array}{cll}1-x & \text { if } & x \leq 2 \\ 2 x-x^{2} & \text { if } & x>2\end{array}\right.$. Fully discuss the continuity of this function.

$$
\begin{aligned}
& f \text { is continuous at } \\
& \text { all values of } x \\
& \text { except at } x=2 \text { (polynomials) } \\
& \begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(1-x) \\
&=1-2=-1 \\
& \begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(2 x-x^{2}\right) \\
&=4-4=0 \\
& \lim _{x \rightarrow 2} f(x) \text { DNE, so } f(x)
\end{aligned} \\
& \text { is not continuous at } \\
& x=2 .
\end{aligned}
\end{aligned}
$$

