\qquad

You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 7 of the following 8 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. If you have any questions, please come to the front and ask.

1. Using the definition of the derivative, find $f^{\prime}(x)$ if $f(x)=\frac{1}{x^{2}}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}-\left(x+h^{2}\right.}{(x+h)^{2} \cdot x^{2}} \cdot \frac{1}{h}=\lim _{h \rightarrow 0} \frac{x^{2}-x^{2}-2 x h-h^{2}}{(x+h)^{2} x^{2} h} \\
& =\lim _{h \rightarrow 0} \frac{h(-2 x-h)}{h(x+h)^{2} x^{2}}=\lim _{h \rightarrow 0} \frac{-2 x-h}{(x+h)^{2} x^{2}}=\frac{-2 x}{x^{4}}=\frac{-2}{x^{3}}
\end{aligned}
$$

2. Evaluate the following limits. If any of them do not exist, EXPLAIN why not ("because it's undefined" and "denominator is zero" are not sufficient explanations).
(a) $\lim _{x \rightarrow 3} \frac{9-x^{2}}{x-3}=\lim _{x \rightarrow 3} \frac{(3-x)(3+x)}{x-3}=\lim _{x \rightarrow 3} \frac{-(-3+x)(3+x)}{x+3}=-6$

$$
\text { (fill in, get } \frac{0}{0} \text {) }
$$

(b) $\lim _{x \rightarrow 0^{+}}\left(x-\frac{1}{x}\right)=\lim _{x \rightarrow 0^{+}} \frac{x^{2}-1}{x}$ fill in, get $\frac{-1}{0} \ldots$

$$
=-\infty \cdot \text { see chart }
$$

(c) $\lim _{x \rightarrow 1} \frac{2 x+3}{x+1}=\frac{2(1)+3}{1+1}=\frac{5}{2}$
3. Suppose that George is the business manager for a company that manufactures digital cameras. If x hundred cameras are produced, they can all be sold if the price is set at $p(x)=300-0.0035 x^{2}$ dollars. The cost to produce x hundred cameras is $C(x)=200-0.07 x^{2}+275 x$.
a) Find a function for Profit.

$$
\begin{aligned}
& \text { Profit }=\text { Revenue }- \text { Cost }=(\text { price })(\text { quantity })-\text { cost } \\
& P(x)=\left(300-0.0035 x^{2}\right)(x)-\left(200-0.07 x^{2}+275 x\right) \\
& P(x)=300 x-0.0035 x^{3}-200+0.07 x^{2}-275 x
\end{aligned}
$$

b) Find a function for Marginal Profit. $\quad P(x)=-0.0035 x^{3}+0.07 x^{2}+25 x-200$

$$
\text { Marginal Profit }=p^{\prime}(x)=-0.0105 x^{2}+0.14 x+25
$$

c) Suppose the current level of production is $x=10$ (1000 cameras). Based on the marginal profit at this level of production, should George recommend increasing or decreasing production in order to increase profit?

$$
\begin{aligned}
p^{\prime}(10) & =-0.0105(100)+0.14(10)+25 \\
& =-1.05+1.4+25 \\
& =\$ 25.35 \text { expected increase in } P \text { if } x \text { goes from } 10 \text { toll. }
\end{aligned}
$$

Since $\rho^{\prime}(10)>0$, making the next hundred cameras will increase profit, so YES, recommend increasing production.
4. Find $f^{\prime}(x)$ (do not simplify!) if :
a) $f(x)=\frac{x}{x^{2}-1}+\frac{4-x}{x^{2}+1}$

$$
f^{\prime}(x)=\frac{(1)\left(x^{2}-1\right)-(x)(2 x)}{\left(x^{2}-1\right)^{2}}+\frac{(-1)\left(x^{2}+1\right)-(4-x)(2 x)}{\left(x^{2}+1\right)^{2}}
$$

b)

$$
\begin{aligned}
& f(x)=\left(2 \sqrt[3]{x}+7 x^{4}-6\right)\left(x^{-3}+2 x-\pi\right)=\left(2 x^{1 / 3}+7 x^{4}-6\right)\left(x^{-3}+2 x-\pi\right) \\
& f^{\prime}(x)=\left(\frac{2}{3} x^{-2 / 3}+28 x^{3}\right)\left(x^{-3}+2 x-\pi\right)+\left(2 x^{1 / 3}+7 x^{4}-6\right)\left(-3 x^{-4}+2\right)
\end{aligned}
$$

5. Sketch a nice big graph of $f(x)=\left\{\begin{array}{ll}x^{2}+x-3 & x<1 \\ 1-2 x & 1 \leq x<4 . \\ 3 & 4 \leq x\end{array}\right.$. Be sure to clearly label points and axes. Under your graph, list the intervals) where $f(x)$ is continuous.

$f(x)$ is continuous on $(-\infty, 4) \cup(4, \infty)$
6. Find the equation of the line tangent to $f(x)=\frac{\left(x^{2}+x-3\right)(4-x)}{2 x-1}$ at the point where $x=1$.
point : $x=1$

$$
\begin{aligned}
& x=1 \\
& y=\frac{(1+1-3)(4-1)}{2-1}=\frac{-1 \cdot 3}{1}=-3 \\
& (1,-3)
\end{aligned}
$$

Slope:

$$
\begin{aligned}
& f^{\prime}(x)=\left[(2 x+1)(4-x)+\left(x^{2}+x-3\right)(-1)\right](2 x-1) \\
& -\left(x^{2}+x-3\right)(4-x)(2) \\
& (2 x-1)^{2} \\
& m=f^{\prime}(1)=\frac{[(3)(3)+(-1)(-1)](1)-(-1)(3)(2)}{1} \\
& =10+6=16
\end{aligned}
$$

Line: $y+3=16(x-1)$
7. Consider the graph of the function $f(x)$ given below.
(a) Find $\lim _{x \rightarrow 0} f(x)=0$
(b) Find $\lim _{x-1} f(x)=-1$
(c) Find $\lim _{x \rightarrow 1^{-}} f(x)=\infty$
(d) Find $\lim _{x \rightarrow-1} f(x)$. DNE
(e) Find $\lim _{x \rightarrow 4} f(x)=0$

(f) Find $\lim _{x \rightarrow+\infty} f(x)=2$
8. Find the equation of the line parallel to $2 x+y=3$ which contains the point $(5,4)$.
old Line:

$$
\begin{aligned}
2 x+y & =3 \\
y & =-2 x+3 \\
m_{\text {old }} & =-2
\end{aligned}
$$

New Line: $m=-2$ through $(5,4)$

$$
\begin{aligned}
y-4=-2(x-5) \quad y & =-2 x+10+4 \\
y & =-2 x+14
\end{aligned}
$$

