\qquad

You have 60 minutes to complete this test. You must show all work to receive full credit. Work any 7 of the following 8 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. If you have any questions, please come to the front and ask.

1. Using the definition of the derivative, find $f^{\prime}(x)$ if $f(x)=\sqrt{2 x+3}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{2(x+h)+3}-\sqrt{2 x+3}}{h} \cdot \frac{\sqrt{2(x+h)+3}+\sqrt{2 x+3}}{\sqrt{2(x+h)+3}+\sqrt{2 x+3}} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)+3-(2 x+3)}{h(\sqrt{2(x+h)+3}+\sqrt{2 x+3})}=\lim _{h \rightarrow 0} \frac{2 x+2 h+3-2 x-3}{h(\sqrt{2(x+h)+3}+\sqrt{2 x+3})} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{2(x+h)+3}+\sqrt{2 x+3}}=\lim _{h \rightarrow 0} \frac{2}{\sqrt{2(x+h)+3}+\sqrt{2 x+3}} \\
& =\frac{2}{\sqrt{2 x+3}+\sqrt{2 x+3}}=\frac{1}{\sqrt{2 x+3}}
\end{aligned}
$$

2. Evaluate the following limits. If any of them do not exist, EXPLAIN why not ("because it's undefined" and "denominator is zero" are not sufficient explanations).
(a) $\lim _{x \rightarrow 3} \frac{x+3}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{x+3}{(x+3)(x-3)}=\lim _{x \rightarrow 3} \frac{1}{x-3} \quad$ DNE

$$
\text { filling in } x=3 \text { gives } \frac{1}{0} \text {, use chart }
$$

(b) $\lim _{x \rightarrow 5} \sqrt[3]{x^{2}-17}=\sqrt[3]{25-17}$

$$
=\sqrt[3]{8}
$$

$$
=2
$$

(c) $\lim _{x \rightarrow 0} \frac{x^{2}+3 x}{x-2 x^{4}}=\lim _{x \rightarrow 0} \frac{x(x+3)}{x\left(1-2 x^{3}\right)}=\lim _{x \rightarrow 0} \frac{x+3}{1-2 x^{3}}=\frac{3}{1}=3$
3. The quantity x of a particular home office copier is inversely proportional to the price p. If the price is $\$ 320$ each, 240,000 copiers will be sold. How many will be sold if the price is $\$ 480$ each?

$$
\begin{aligned}
& X=\frac{k}{p}, k \text { is the proportionality constant, always the same } \\
& p=320 \rightarrow x=240000,50 \quad 240000=\frac{k}{320} \\
& (320)(240000)=k \\
& K=76800000 \\
& x=\frac{76800000}{P} \\
& \text { If } p=480 \text {, then } x=\frac{76800000}{480}=\begin{aligned}
& 160,000 \text { copiers } \\
& \text { will be sold. }
\end{aligned}
\end{aligned}
$$

4. Find $f^{\prime}(x)$ (do not simplify!) if :
a)

$$
\begin{aligned}
& f(x)=\left(\sqrt[3]{x}-5 x^{2}+4\right)\left(4 x^{2}+11 x^{-3}-5\right) \\
& f(x)=\left(x^{1 / 3}-5 x^{2}+4\right)\left(4 x^{2}+11 x^{-3}-5\right) \\
& f^{\prime}(x)=\left(\frac{1}{3} x^{-2 / 3}-10 x\right)\left(4 x^{2}+11 x^{-3}-5\right)+\left(x^{1 / 3}-5 x^{2}+4\right)\left(8 x-33 x^{-4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } f(x)=\frac{5 x^{8}-2 x^{3}}{\left(x^{5}-3\right)\left(x^{4}+7\right)} \\
& f^{\prime}(x)=\frac{\left(40 x^{7}-6 x^{2}\right)\left[\left(x^{5}-3\right)\left(x^{4}+7\right)\right]-\left(5 x^{8}-2 x^{3}\right)\left[\left(5 x^{4}\right)\left(x^{4}+7\right)+\left(x^{5}-3\right)\left(4 x^{3}\right)\right.}{\left[\left(x^{5}-3\right)\left(x^{4}+7\right)\right]^{2}}
\end{aligned}
$$

5. Suppose a company can sell x units of a product if the price is set at $p(x)=50-0.5 x$, and that the total cost of producing all x units is $C(x)=4 x+10$.
a) Write an equation to express the revenue from selling x units of the product.

$$
\text { Revenue }=\text { price } \cdot \text { quantity }
$$

$$
R=(50-0.5 x)(x)=50 x-0.5 x^{2}
$$

b) Write an equation to express the profit from selling x units of the product.

Profit $=$ Revenue $-\cos t$

$$
P=\left(50 x-0.5 x^{2}\right)-(4 x+10)=46 x-0.5 x^{2}-10
$$

c) What is the actual profit obtained from the production and sale of the $21^{\text {st }}$ unit?

$$
\begin{aligned}
\text { unit? } \\
\begin{aligned}
\text { actual profit } & =P(21)-P(20) \\
& =\left[46(21)-0.5(21)^{2}-10\right]-\left[46(20)-0.5(20)^{2}-10\right] \\
& =735.5-710=\$ 25.50
\end{aligned} \$=\$ \text { (2) }
\end{aligned}
$$

d) What is the marginal profit obtained from the production and sale of the $21^{\text {st }}$ unit?

$$
\begin{aligned}
& p^{\prime}(x)=46-x \\
& p^{\prime}(20)=46-20=26 \text { marginal profit from } 21^{\text {st }} \text { unit }
\end{aligned}
$$

6. Find the equation of the line tangent to $f(x)=\frac{12 x^{2}-3 x}{3 \sqrt{x}}$ at the point where $x=1$.

$$
\left.\left.\begin{array}{rl}
\text { point: } x=1, y & =\frac{12(1)^{2}-3(1)}{3 \sqrt{1}}=\frac{12-3}{3}=3 \quad(1,3) \\
\text { Slope : } f^{\prime}(x) & =\frac{(24 x-3)(3 \sqrt{x})-\left(12 x^{2}-3 x\right)\left(\frac{3}{2} x^{-1 / 2}\right)}{9 x} \\
m & =f^{\prime}(1)
\end{array}\right)=\frac{(24-3)(3)-(12-3)(3 / 2)}{9}\right) ~=\frac{63-27 / 2}{9}=\frac{\frac{99}{2}}{9}=\frac{11}{2} .
$$

Line: $\quad y-3=\frac{11}{2}(x-1)$
7. Consider the graph of the function $f(x)$ given below.

(a) Find $\lim _{x \rightarrow 1} f(x), \infty \quad$ 1
(b) Find $\lim _{x \rightarrow 2} f(x) . \quad 0$
(c) Find $\lim _{x \rightarrow 0^{-}} f(x)$.
(d) Find $\lim _{x \rightarrow 0^{+}} f(x) .2$
(e) Find $\lim _{x \rightarrow 0} f(x) \quad$ DNE
(f) Find $\lim _{x \rightarrow 3} f(x) . \quad-2$
8. Sketch a graph of the function $f(x)=\left\{\begin{array}{lll}-x^{2}+2 x+2 & \text { if } & x<1 \\ 2 x-2 & \text { if } & x \geq 1\end{array}\right.$. Is this function continuous at $x=1$? Explain why or why not.

point at $f(1)=2(1)-2=0,(1,0)$
hole if we fill $x=1$ in to other part

$$
-1+2+2=3 \quad \text { hole at }(1,3)
$$

The function is NOT continuousat $x=1$, which can be seen from the broken graph. More precisely, $\lim _{x \rightarrow 1^{+}} f(x)=1\left\{\lim _{x \rightarrow 1} f(x) D N E\right.$, so not $\left.\lim _{x \rightarrow 1} f(x)=3\right\} x \rightarrow 1$ continuous.

