You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 7 of the following 8 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. If you have any questions, please come to the front and ask.

1. Using the definition of the derivative, find $f^{\prime}(x)$ if $f(x)=\frac{1}{x^{2}}$.
2. Evaluate the following limits. If any of them do not exist, EXPLAIN why not ("because it's undefined" and "denominator is zero" are not sufficient explanations).
(a) $\lim _{x \rightarrow 3} \frac{9-x^{2}}{x-3}$
(b) $\quad \lim _{x \rightarrow 0^{+}}\left(x-\frac{1}{x}\right)$
(c) $\lim _{x \rightarrow 1} \frac{2 x+3}{x+1}$
3. Suppose that George is the business manager for a company that manufactures digital cameras. If $x$ hundred cameras are produced, they can all be sold if the price is set at $p(x)=300-0.0035 x^{2}$ dollars. The cost to produce $x$ hundred cameras is $C(x)=200-0.07 x^{2}+275 x$.
a) Find a function for Profit.
b) Find a function for Marginal Profit.
c) Suppose the current level of production is $x=10$ (1000 cameras). Based on the marginal profit at this level of production, should George recommend increasing or decreasing production in order to increase profit?
4. Find $f^{\prime}(x)$ (do not simplify!) if :
a) $f(x)=\frac{x}{x^{2}-1}+\frac{4-x}{x^{2}+1}$
b) $f(x)=\left(2 \sqrt[3]{x}+7 x^{4}-6\right)\left(x^{-3}+2 x-\pi\right)$
5. Sketch a nice big graph of $f(x)=\left\{\begin{array}{ll}x^{2}+x-3 & x<1 \\ 1-2 x & 1 \leq x<4 . \\ 3 & 4 \leq x\end{array}\right.$. Be sure to clearly label points and axes. Under your graph, list the interval(s) where $f(x)$ is continuous.
6. Find the equation of the line tangent to $f(x)=\frac{\left(x^{2}+x-3\right)(4-x)}{2 x-1}$ at the point where $x=1$.
7. Consider the graph of the function $f(x)$ given below.
(a) Find $\lim _{x \rightarrow 0} f(x)$.
(b) Find $\lim _{x \rightarrow 1^{-}} f(x)$.
(c) Find $\lim _{x \rightarrow 1^{+}} f(x)$.
(d) Find $\lim _{x \rightarrow 1} f(x)$.
(e) Find $\lim _{x \rightarrow 4} f(x)$.

(f) Find $\lim _{x \rightarrow+\infty} f(x)$.
8. Find the equation of the line parallel to $2 x+y=3$ which contains the point $(5,4)$.
