You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 7 of the following 8 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Suppose $f(x)=\frac{x^{2}}{x^{2}-4}$. Find all intervals where $f(x)$ is concave up and where it is concave down (interval notation, please). List the inflection points.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(2 x)\left(x^{2}-4\right)-\left(x^{2}\right)(2 x)}{\left(x^{2}-4\right)^{2}}=\frac{2 x^{3}-8 x-2 x^{3}}{\left(x^{2}-4\right)^{2}}=\frac{-8 x}{\left(x^{2}-4\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{(-8)\left(x^{2}-4\right)^{2}+8 x(2)\left(x^{2}-4\right)(2 x)}{\left(x^{2}-4\right)^{4}}=\frac{-8 x^{2}+32+32 x^{2}}{\left(x^{2}-4\right)^{3}} \\
&=\frac{24 x^{2}+32}{\left(x^{2}-4\right)^{3}} \\
& \text { IN: } x= \pm 2 \quad+\quad \text { conc up on }(-\infty,-2) \cup(2, \infty) \\
& \text { conc down on }(-2,2)
\end{aligned} \quad \begin{array}{ll}
\text { no inflection points since } \\
-2 & f(2) \text { and } f(-2) \text { are undefined }
\end{array}
$$

2. For the following functions, find all horizontal and vertical asymptotes (remember that an asymptote is a LINE, not a number). If there are no asymptotes, say so.
a) $\quad f(x)=\frac{\left(6 x^{2}-11 x-2\right.}{\left(3 x^{2}-5 x-2\right.}=\frac{(6 x+1)(x-2)}{(3 x+1)(x-2)}$

HA: $y=2$
VA: $x=-1 / 3$
b) $\quad f(x)=\frac{(1)}{\left(x^{2}\right)+1}$

$$
\begin{aligned}
& x^{2}+1=0 \\
& \text { no solos, no V4 }
\end{aligned}
$$

c) $\quad f(x)=\frac{4}{x-6}+4$

$$
=\frac{4+\sqrt{4 x}-24}{x-6}
$$

HA: $y=4$
VA: $x=6$
3. Suppose that at price p, demand for a certain product is given by

$$
q(p)=\frac{(p-100)^{2}}{2}
$$

a) Find the price elasticity of demand when price is $\$ 20$. Is demand elastic or inelastic at this price?

$$
\begin{aligned}
& E(p)=\frac{p}{q} \cdot q^{\prime}=\frac{p}{\frac{p-100)^{2}}{2} \cdot(p-100)=\frac{2 p}{p-100}} \\
& E(20)=\frac{40}{-80}=\frac{-1}{2}
\end{aligned}
$$

$|E(20)|=1 / 2<1$, demand is inelastic when $p=20$.
b) Give an example of a product in the correct price range that might behave as described in (a).
necessity for $\$ 20$, lots to choose from...
c) If the price of $\$ 20$ decreases by 10%, describe how demand will change.

$$
\begin{gathered}
\text { inst have nice, but not } \\
\text { necessary }
\end{gathered}
$$

4. Determine where the function $f(x)=x^{3}-9 x^{2}+24 x-19$ is increasing and where it is decreasing, and where it is concave up and concave down. Find all extrema and inflection points. Then sketch the graph.

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-18 x+24 \\
& =3\left(x^{2}-6 x+8\right) \\
& =3(x-2)(x-4)
\end{aligned}
$$

$C N: \quad x=2.4$

$$
\begin{aligned}
f^{\prime \prime}(x) & =6 x-18 \\
& =6(x-3) \\
& \xrightarrow{\theta}+f^{\prime \prime}
\end{aligned}
$$

inc on $(-\infty, 2) \cup(4, \infty)$
dec on $(2,4)$
$\max (2,1)$

$$
\min (4,-3)
$$

conc up on $(3, \infty)$
conc down on $(-\infty, 3)$

$$
\text { inf. } p+(3,-1)
$$

5. Find all absolute extrema of $f(x)=\frac{x}{x^{2}+1}$ on the interval $[0,2]$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(1)\left(x^{2}+1\right)-(x)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{x^{2}+1-2 x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \\
& C N: x=1, x \geq 1 \text { not in interval } \\
& f(0)=0 \\
& f(1)=1 / 2
\end{aligned} \quad \text { absolute max }(1,1 / 2)
$$

6. Sketch the graph of a function $f(x)$ so that all conditions below are satisfied. Be sure your graph is big enough so I can see it and it is properly labeled.
a) $\lim _{x \rightarrow-\infty} f(x)=-2, \lim _{x \rightarrow 2^{+}} f(x)=\infty$, and $f(x)$ is defined for all x. HA $y=-2$, VA $x=2$
b) $f^{\prime}(x)<0$ when $x<-3$ and when $x>2, f^{\prime}(x)=0$ when $-1<x<2$, and

$$
f^{\prime}(x)>0 \text { when }-3<x<-1 .
$$

c) $f^{\prime \prime}(x)<0$ when $x<-4$, but $f^{\prime \prime}(x)>0$ when $-4<x<-1$ and when $x>2$.

7. In a factory, the output Q is given by the equation $Q=60 K^{\frac{1}{3}} L^{\frac{2}{3}}$ units, where K is the capital investment in thousands of dollars, and L is the size of the labor force in worker hours. If output is kept constant, at what rate is capital investment changing at a time when $K=8, L=1000$, and L is increasing at the rate of 25 worker hours per week?

$$
\begin{aligned}
& \frac{d Q}{d t}=60\left[\frac{1}{3} K^{-2 / 3} L^{2 / 3} \frac{d K}{d t}+\frac{2}{3} K^{1 / 3} L^{-1 / 3} \frac{d L}{d t}\right] \\
& \frac{d Q}{d t}=\frac{20 L^{2 / 3}}{K^{2 / 3}} \frac{d K}{d t}+\frac{40 K^{1 / 3}}{L^{1 / 3}} \frac{d L}{d t} \\
& 0=20 \frac{(1000)^{2 / 3}}{8^{2 / 3}} \frac{d K}{d t}+\frac{40(8)^{1 / 3}}{(1000)^{1 / 3}}(25) \\
& 0=20 \frac{(100)}{4} \cdot \frac{d K}{d t}+40 \frac{(2)}{10}(25)
\end{aligned}
$$

$$
0=500 \frac{d k}{d t}+200
$$

$$
\frac{d k}{d t}=-2 / 5
$$

To keep out put the same, capital investment should be changing at a rate of $-2 / 5$ thousand dollars per wed (or $\$ 400$ per week decrease)
8. Mrs. Jones runs a small insurance company that sells policies for a large firm.

Mrs. Jones does not sell policies herself, but she is paid a commission of $\$ 50$ for each policy sold by her employees. When she employs m salespeople, her company will sell q policies each week, where $q=m^{3}-12 m^{2}+60 m$. She pays her employees $\$ 750$ per week, and her weekly fixed costs are $\$ 2500$. Her office can accommodate at most 7 employees. How many employees should she have in order to maximize her weekly profit?

$$
\begin{aligned}
& \text { Profit }=\text { Rev -cost } \\
& P=50\left(m^{3}-12 m^{2}+60 m\right)-750 m-2500 \\
& P=50 m^{3}-600 m^{2}+3000 m-750 m-2500 \\
& P=50 m^{3}-600 m^{2}+2250 m-2500 \\
& p^{\prime}=150 m^{2}-1200 m+2250 \\
& P^{\prime}=150\left(m^{2}-8 m+15\right) \\
& P^{\prime}=150(m-3)(m-5)
\end{aligned}
$$

CH: $m=3,5$

To maximize profit, she should have 7 employees.
local max when $m=3$

could have max at end pt.

