\qquad Math 12
Test 2
Summer 2011

You have 60 minutes to complete this test. You must show all work to receive full credit. Work any 7 of the following 8 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Suppose $f(x)=\frac{x^{2}}{1-x}$. List the intervals where the function is increasing and where it is decreasing, and find all of the maximum and minimum points.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x(1-x)-\left(x^{2}\right)(-1)}{(1-x)^{2}} \\
& =\frac{2 x-2 x^{2}+x^{2}}{(1-x)^{2}} \\
& =\frac{2 x-x^{2}}{(1-x)^{2}} \\
& =\frac{x(2-x)}{(1-x)^{2}}
\end{aligned}
$$

2. For the following functions, find all horizontal and vertical asymptotes (remember that an asymptote is a LINE, not a number). If there are no asymptotes, say so.
(a) $f(x)=\sqrt{\frac{x^{3}+1}{4 x^{3}}} \quad$ VA: $\begin{aligned} & 4 x^{3}=0 \\ & x=0\end{aligned} \quad$ HA $: \frac{\sqrt{x^{3}}}{\sqrt{4 x^{3}}} \rightarrow \frac{\sqrt{1}}{\sqrt{4}} \rightarrow \frac{1}{2} \quad \begin{aligned} & \underline{V A}: \\ & \frac{H A}{}: y=1 / 2\end{aligned}$
(b) $\quad f(x)=\frac{3 x+3}{\left(x^{2}\right)-x-2}=\frac{3(x+1)}{(x-2)(x+1)}$

VA: $x=2 \quad \begin{gathered}\text { (notice } x=-1 \\ \text { gives anole) }\end{gathered}$

$$
\text { HA: } y=0
$$

(c) $\quad f(x)=\frac{4 x-5}{2}$

VA: none
HA: none
3. Suppose $q(p)=\sqrt{2500-2 p}$ units of a product are demanded when price is p dollars per unit.
a) Calculate the price elasticity of demand when $p=900$. At this price, is the demand elastic or inelastic?

$$
\begin{aligned}
& \begin{aligned}
& E(p)=q^{\prime} \cdot \frac{p}{q}=\frac{1}{2}(2500-2 p)^{-1 / 2}(-2) \cdot \frac{p}{\sqrt{2500-2 p}} \\
& E(900)=\frac{1}{2}(2500-1800)^{-1 / 2}(-2) \cdot \frac{900}{\sqrt{2500-1800}} \\
&=\frac{-900}{700}=-\frac{9}{7}<\text { elasticity when } p=900 . \\
& \text { Since }|E(900)|=\left|\frac{-9}{7}\right|=\frac{9}{7}>1, \text { demand is elastic }
\end{aligned}
\end{aligned}
$$

b) Write a sentence explaining the meaning of your answer in (a) in plain language.
If price goes up 1% from $\$ 900$ (to $\$ 909$), demand will go down $\frac{9}{7} \%$.
c) Give an example of a product in the correct price range that might behave this way.
Any luxury item that costs $\$ 900$, maybe arline tickets, jewelry...
4. Find the derivatives of the following functions:
a) $f(x)=\sqrt[3]{(1-3 x)^{2}}=(1-3 x)^{2 / 3}$

$$
f^{\prime}(x)=\frac{2}{3}(1-3 x)^{-1 / 3}(-3)
$$

$$
\begin{aligned}
& \text { b) } f(x)=\sqrt{\frac{x+2}{3 x-1}}=\left(\frac{x+2}{3 x-1}\right)^{1 / 2} \\
& f^{\prime}(x)=\frac{1}{2}\left(\frac{x+2}{3 x-1}\right)^{-1 / 2}\left(\frac{(1)(3 x-1)-(x+2)(3)}{(3 x-1)^{2}}\right) \\
& \text { OR } f^{\prime}(x)=\frac{1}{2}(x+2)^{-1 / 2}(1)(3 x-1)^{1 / 2}-(x+2)^{1 / 2}\left(\frac{1}{2}\right)(3 x-1)^{-1 / 2}(3) \\
& 3 x-1
\end{aligned}
$$

5. Sketch a nice BIG graph of a function with all the properties listed below. Make sure your graph is clearly labeled.
a) $\quad f^{\prime}(x)>0$ when $-1<x<1$, but $f^{\prime}(x) \leq 0$ otherwise
b) $\quad f^{\prime \prime}(x)>0$ when $-2<x<0$ and when $x>2$, but $f^{\prime \prime}(x) \leq 0$ otherwise
c) $\quad f(x)$ is defined for all values of x
d) $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=0 \longrightarrow H A$ at $y=0$, gets close on bothends.
dec dec inc inc dec dec

6. Find the equation of the line tangent to the graph of $x^{2} y-2 x y^{3}+6=2 x+2 y$ at the point $(0,3)$.

$$
(2 x)(y)+\left(x^{2}\right)(1)\left(y^{\prime}\right)+(-2)\left(y^{3}\right)+(-2 x)\left(3 y^{2}\right)\left(y^{\prime}\right)=2+2(1)\left(y^{\prime}\right)
$$

$$
\text { Fill in }(0,3) \text {, find } y^{\prime}=\text { slope. }
$$

$$
0+0-2(27)+0=2+2 y^{\prime}
$$

$$
-54=2+2 y
$$

$$
-56=2 y^{\prime}
$$

$$
-28=y^{\prime}=m
$$

Line: $y-3=-28(x-0)$

$$
y=-28 x+3
$$

7. Find the absolute minimum and absolute maximum points of $f(x)=\left(x^{2}-4\right)^{3}$ on the interval $[-3,1]$.

$$
\begin{aligned}
f^{\prime}(x) & =3\left(x^{2}-4\right)^{2}(2 x) \\
& =3[(x+2)(x-2)]^{2}(2 x)
\end{aligned}
$$

$C N: \quad x=-2,2,0$ not in interval

$$
\begin{aligned}
& f(-3)=(9-4)^{3}=125 \longleftarrow \text { abs ax at }(-3,125) \\
& f(-2)=(4-4)^{3}=0 \\
& f(0)=(0-4)^{3}=-64 \longleftarrow \text { abs at }(0,-64) \\
& f(1)=(1-4)^{3}=-27
\end{aligned}
$$

8. A commercial fruit grower must decide when to pick his pears. If he does it now, the pears will bring 32 cents per pound and each tree will yield 60 pounds of pears. Over the next 4 weeks, the yield per tree will increase 9 pounds per week, but the price per pound will decrease 3 cents per week. In order to maximize revenue, when should he pick to pears? (Hint: It might be easier to work in pennies rather than dollars).

$$
\begin{aligned}
& \text { Revenue }=\text { price. quantity } \\
& R=(32-3 x)(60+9 x) \text {, where } x=\# \text { weeks from now. } \\
& \begin{aligned}
R^{\prime} & =(-3)(60+9 x)+(32-3 x)(9) \\
& =-180-27 x+288-27 x \\
& =-54 x+108=0
\end{aligned}
\end{aligned}
$$

$C N: X=2$
must make sure $x=2$ gives a maximum
method (1)

method (2)

$$
\begin{aligned}
& R^{\prime \prime}=-54 \\
& R^{\prime \prime}(2)=-54<0
\end{aligned}
$$

* \max

Should wait 2 weeks to pick pears in order to maximize revenue.

