\qquad

You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 6 of the following 7 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves tomorrow.

1. Solve $y^{\prime}=\sqrt{y} e^{x}-\sqrt{y}$ if $y=1$ when $x=0$.

$$
\begin{array}{ll}
\frac{d y}{d x}=\sqrt{y}\left(e^{x}-1\right) \\
y^{-1 / 2} d i y=\left(e^{x}-1\right) d x & 2(1)^{1 / 2}=e^{0}- \\
2 y^{1 / 2}=e^{x}-x+c \\
1+C \\
\sqrt{y}=C \\
y=\frac{1}{2} e^{x}-\frac{1}{2} x+\frac{1}{2} \\
y=\left(\frac{1}{2} e^{x}-\frac{1}{2} x+\frac{1}{2}\right)^{2}
\end{array}
$$

2. Find $f^{\prime}(x)$ for the following functions. DO NOT simplify!
(a) $\quad f(x)=\frac{e^{4 x}}{x^{2}-2}$

$$
f^{\prime}(x)=\frac{\left(4 e^{4 x}\right)\left(x^{2}-2\right)-\left(e^{4 x}\right)(2 x)}{\left(x^{2}-2\right)^{2}}
$$

(b) $\quad f(x)=\ln \left(e^{x}-3 x\right)$

$$
f^{\prime}(x)=\left(\frac{1}{e^{x}-3 x}\right)\left(e^{x-3}\right)
$$

3. Suppose you want to have $\$ 15,000$ saved for a wedding 3 years from now. You and your fiance already have a commitment from your future in-laws to contribute $\$ 8000$ at the time of the wedding. How much should you invest now in one lump sum to make up the difference if you can earn an annual interest rate of 12% compounded monthly?

$$
\begin{aligned}
& \frac{15000}{-8000} \\
& 7000 \\
& B=7000 \\
& r=.12 \\
& k=12 \\
& t=3 \text { years needed at end } \\
& B=P\left(1+\frac{r}{k}\right)^{k t}=P(1213)=P\left(1+\frac{.12}{12}\right)^{36}=\frac{7000}{(1.01)^{36}} \approx \$ 4892.47 \\
& P 000=\frac{P}{P=}
\end{aligned}
$$

4. a) Find x if $\ln \left(x^{3}\right)-\ln (x)=2$

$$
\begin{array}{rlr}
\ln \left(\frac{x^{3}}{x}\right) & =2 & \\
\ln \left(x^{2}\right) & =2 & \text { OR }
\end{array} \quad \begin{aligned}
2 \ln x & =2 \\
x^{2} & =e^{2} \\
x & \ln x
\end{aligned}=1 .
$$

b) If $\log _{2} x=2, \log _{2} y=-3$, and $\log _{2} z=6$, find $\log _{2}\left(\frac{x^{3}}{y \sqrt{z}}\right)$.

$$
\begin{aligned}
\log _{2}\left(\frac{x^{3}}{y z^{1 / 2}}\right) & =\log _{2} x^{3}-\left(\log _{2} y z^{1 / 2}\right) \\
& =\log _{2} x^{3}-\log _{2} y-\log _{2} z^{1 / 2} \\
& =3 \log _{2} x-\log _{2} y-\frac{1}{2} \log _{2} z \\
& =3(2)-(-3)-\frac{1}{2}(6)=6+3-3=6
\end{aligned}
$$

5. For the function $f(x)=\ln \left(1+x^{2}\right)$, list all intervals of increase and decrease, all maximum and minimum points, intervals where the function is concave up and concave down, all inflection points, and all asymptotes (or say there are none). Then sketch the graph of the function.

$$
\begin{aligned}
f^{\prime}(x)= & \frac{1}{1+x^{2}}(2 x)=\frac{2 x}{1+x^{2}} \\
\text { Crit 甘 } & x=0 \quad f_{0}^{\prime} \\
& f(0)=\ln (1)=0 \\
f^{\prime \prime}(x)= & \frac{(2)\left(1+x^{2}\right)-(2 x)(2 x)}{\left(1+x^{2}\right)^{2}} \\
= & \frac{2+2 x^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{2-2 x^{2}}{\left(1+x^{2}\right)^{2}} \\
= & \frac{-2\left(x^{2}-1\right)}{\left(1+x^{2}\right)^{2}}=\frac{-2(x+1)(x-1)}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

$$
\operatorname{inc} \text { on }(0, \infty)
$$

$$
\operatorname{dec} \text { on }(-\infty, 0)
$$

$$
\min (0,0)
$$

no max

$$
\text { conc up on }(-1,1)
$$

conc down on

$$
(-\infty,-1) \cup(-1, \infty)
$$

inf pets

$$
\begin{aligned}
& (1, \ln 2) \\
& (-1, \ln 2) \\
& \quad \approx 0.69
\end{aligned}
$$

No $V A$
No HA

Inf \#'s $\quad x=1,-1$

$$
\begin{aligned}
& f \text { is defined forall } x \text {, no VA } \\
& \text { If } x \rightarrow \pm, f(x) \rightarrow \infty \text {, no HA }
\end{aligned}
$$

dec dec inc inc

6. Evaluate the following integrals:
a)

$$
\begin{aligned}
\int(2 \sqrt{x}-3 \sqrt[4]{x}) d x & =\int\left(2 x^{1 / 2}-3 x^{1 / 4}\right) d x \\
& =2\left(\frac{2}{3} x^{3 / 2}\right)-3\left(\frac{4}{5} x^{5 / 4}\right)+C \\
& =\frac{4}{3} x^{3 / 2}-\frac{12}{5} x^{5 / 4}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \int \frac{2 x^{3}+3 x}{x^{4}+3 x^{2}+7} d x=\int \frac{1 / 2 d u}{u}=\frac{1}{2} \ln |u|+C \\
& u=x^{4}+3 x^{2}+7 \\
& d u=\left(4 x^{3}+6 x\right) d x \\
& \quad=2\left(2 x^{3}+3 x\right) d x \\
& \frac{1}{2} d u=\frac{1}{2} \ln \left|x^{4}+3 x^{2}+7\right|+C
\end{aligned}
$$

7. Solve $\int e^{-x}(x+1) d x$

$$
\begin{array}{ll}
u=x+1 & d v=e^{-x} d x \\
d u=d x & v=\int e^{-x} d x=-e^{-x} \\
u v-\int v d u & \\
\int e^{-x}(x+1) d x=-e^{-x}(x+1)+\int e^{-x} d x \\
& =-e^{-x}(x+1)-e^{-x}+C
\end{array}
$$

