\qquad Math 12

You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 6 of the following 7 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves tomorrow.

1. Solve $x^{2} y^{\prime}+\frac{1}{y^{2}}=0$ if $y=2$ when $x=1$.

$$
\begin{aligned}
& x^{2} \frac{d y}{d x}=\frac{-1}{y^{2}} \\
& x^{2} d y=\frac{-1}{y^{2}} d x \\
& y^{2} d y=-\frac{1}{x^{2}} d x \\
& \int y^{2} d y=-\int x^{-2} d x \\
& \frac{1}{3} y^{3}=x^{-1}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { To find } C \text {, fill in } x=1, y=2 \text { : } \\
& \frac{1}{3}(2)^{3}=1+c \\
& \frac{8}{3}=1+c \\
& c=\frac{5}{3} \\
& \frac{1}{3} y^{3}=x^{-1}+\frac{5}{3} \\
& y^{3}=3 x^{-1}+5 \\
& y=\sqrt[3]{3 x^{-1}+5}
\end{aligned}
$$

2. Find $f^{\prime}(x)$ for the following functions. DO NOT simplify!
(a) $\quad f(x)=\frac{4 e^{3 x}}{x e^{x-1}}$

$$
f^{\prime}(x)=\frac{\left(12 e^{3 x}\right)\left(x e^{x-1}\right)-\left(4 e^{3 x}\right)\left((1)\left(e^{x-1}\right)+(x)\left(e^{x-1}\right)(1)\right)}{\left(x e^{x-1}\right)^{2}}
$$

(b) $\quad f(x)=\frac{\ln x}{\sqrt{x}}=\frac{\ln x}{x^{1 / 2}}$
3. Find the balance in an investment account of $\$ 4000$ for 5 years at the annual rate of 11% compounded monthly.

$$
\begin{aligned}
B & =P\left(1+\frac{r}{k}\right)^{k t} \\
B & =4000\left(1+\frac{.11}{4}\right)^{4(5)} \\
& =4000(1.0275)^{20} \\
& \approx \$ 6881.71
\end{aligned}
$$

4. a) Simplify $\log _{2}\left[\ln \left(\sqrt{7+e^{2}}+\sqrt{7}\right)+\ln \left(\sqrt{7+e^{2}}-\sqrt{7}\right)\right]$.

$$
\begin{aligned}
& =\log _{2}\left(\ln \left(\sqrt{7+e^{2}}+\sqrt{7}\right) \cdot\left(\sqrt{7+e^{2}}-\sqrt{7}\right)\right) \\
& =\log _{2}\left(\ln \left(7+e^{2}-7\right)\right)=\log _{2}(2)=1
\end{aligned}
$$

b) Solve for $x: \log _{x}(2 x+3)=2$.

$$
\begin{array}{lc}
2 x+3=x^{2} & x=3, \ngtr \leftarrow \text { can' be base! } \\
x^{2}-2 x-3=0 & x=3 \\
(x-3)(x+1)=0 & x
\end{array}
$$

c) Solve for x : $3^{4 x}=9^{x+1}$.

$$
\begin{gathered}
3^{4 x}=\left(3^{2}\right)^{x+1} \\
3^{4 x}=3^{2 x+2} \\
4 x=2 x+2 \\
2 x=2 \\
x=1
\end{gathered}
$$

5. For the function $f(x)=\frac{e^{x}+e^{-x}}{2}$, list all intervals of increase and decrease, all maximum and minimum points, intervals where the function is concave up and concave down, all inflection points, and all asymptotes (or say there are none). Then sketch the graph of the function.

$$
e^{x}=e^{-x}
$$

$$
x=-x
$$

CA: $x=0$

$$
f(0)=\frac{e^{0}+e^{0}}{2}=\frac{1+1}{2}=1
$$

$\min (0,1)$

$$
\begin{aligned}
f^{\prime \prime}(x)= & \frac{e^{x}+e^{-x}}{2}=0 \\
& e^{x}+e^{-x}=0 \\
& e^{x}=-e^{-x} \\
& \uparrow \text { always t always }
\end{aligned}
$$

no inf. \#'s.

$$
\xrightarrow{t} f^{\prime \prime}
$$

Always defined, so NO $V A$.

$$
\begin{aligned}
& \text { If } x \rightarrow \infty, y \rightarrow \frac{e^{b i g}+e^{-b i g>0}}{2} \rightarrow \infty \\
& \text { If } x \rightarrow-\infty, y \rightarrow \frac{e^{-b i g^{\circ}}+e^{\text {big }}}{2} \rightarrow \infty \\
& \text { NO HA. }
\end{aligned}
$$

inc on $(0, \infty)$
dec on $(-\infty, 0)$
\min at $(0,1)$ no max
concave up on $(-\infty, \infty)$
never concave down no inflection points
VA: none
HA : none

6. Evaluate the following integrals:
a) $\int\left(x^{e}+e^{x}\right) d x=\frac{1}{e-1} x^{e-1}+e^{x}+C$
b)

$$
\begin{aligned}
\int e^{x^{2+\ln x} d x}=\int e^{x^{2}} \cdot e^{\ln x} d x & =\int e^{x^{2}} \cdot x d x \\
u=x^{2} & =\int e^{u}\left(\frac{1}{2} d u\right) \\
d u=2 x d x & =\frac{1}{2} e^{u}+C \\
& =\frac{1}{2} e^{x^{2}}+C
\end{aligned}
$$

7. Solve $\int \frac{\ln x}{x^{2}} d x$

Let $u=\ln x$

$$
d v=x^{-2} d x
$$

$$
d u=\frac{1}{x} d x
$$

$$
v=\int x^{-2} d x=-x^{-1}
$$

$$
\begin{aligned}
\int \frac{\ln x}{x^{2}} d x & =u v-\int v d u \\
& =-x^{-1} \ln x-\int\left(-x^{-1}\right)\left(\frac{1}{x}\right) d x \\
& =-\frac{1}{x} \ln x+\int x^{-2} d x \\
& =\frac{-1}{x} \ln x-\frac{1}{x}+C
\end{aligned}
$$

