\qquad

You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 6 of the following 7 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Solve $x^{2} y^{\prime}+\frac{1}{y^{2}}=0$ if $y=2$ when $x=1$.

$$
\begin{array}{ll}
x^{2} y^{\prime}=\frac{-1}{y^{2}} & \frac{1}{3} y^{3}=x^{-1}+C \\
y^{\prime}=\frac{-1}{x^{2} y^{2}} & y=2 \text { when } x=1, \text { so } \\
\frac{d y}{d x}=\frac{-1}{x^{2} y^{2}} & \frac{8}{3}=1+C \\
y^{2} d y=-\frac{1}{x^{2}} d x & \frac{5}{3}=C \\
\int y^{2} d y=-\int x^{-2} d x & \frac{1}{3} y^{3}=\frac{1}{x}+\frac{5}{3} \\
& y^{3}=\frac{3}{x}+5 \\
& y=\sqrt[3]{\frac{3}{x}+5}
\end{array}
$$

2. Find $f^{\prime}(x)$ for the following functions. DO NOT simplify!
(a) $\quad f(x)=\frac{1+e^{x}}{1-e^{x}}$

$$
f^{\prime}(x)=\frac{\left(e^{x}\right)\left(1-e^{x}\right)-\left(1+e^{x}\right)\left(-e^{x}\right)}{\left(1-e^{x}\right)^{2}}
$$

(b) $\quad f(x)=\ln \sqrt{\frac{2 x+3}{x^{3}-4}}$

$$
f^{\prime}(x)=\frac{1}{\sqrt{\frac{2 x+3}{x^{3}-4}}} \cdot \frac{1}{2}\left(\frac{2 x+3}{x^{3}-4}\right)^{-1 / 2}\left(\frac{(2)\left(x^{3}-4\right)-(2 x+3)\left(3 x^{2}\right)}{\left(x^{3}-4\right)^{2}}\right)
$$

3. Suppose that Investment A earns interest at an annual rate of 8% compounded quarterly. Investment B earns interest at an annual rate of 7.8% compounded continuously. Which investment has the higher yield? Show your work.

To compare, suppose $\$ 100$ is invested for 1 year.
(A)

$$
\begin{aligned}
B & =P\left(1+\frac{r}{K}\right)^{K t} \\
B & =100\left(1+\frac{.08}{4}\right)^{4} \\
& =100(1.02)^{4} \approx \$ 108.24
\end{aligned}
$$

(B) $B=P e^{r t}$

$$
B=100 e^{0.078} \approx \$ 108.11
$$

Investment A has the higher yield.
4. a) Find x if $\log _{2} x+3 \log _{2} 2=\log _{2}\left(\frac{2}{x}\right)$

$$
\begin{aligned}
\log _{2} x+3 & =\log _{2} 2-\log _{2} x \\
\log _{2} x+3 & =1-\log _{2} x \\
2 \log _{2} x & =-2 \\
\log _{2} x & =-1 \\
x & =2^{-1}=\frac{1}{2}
\end{aligned}
$$

b) Simplify $e^{\ln x}+\ln e^{x}+1$

$$
\begin{aligned}
& =x+x+1 \\
& =2 x+1
\end{aligned}
$$

5. For the function $f(x)=x e^{-x}$, list all intervals of increase and decrease, all maximum and minimum points, intervals where the function is concave up and concave down, all inflection points, and all asymptotes (or say there are none). Then sketch the graph of the function.

$$
\begin{aligned}
f^{\prime}(x) & =(1)\left(e^{-x}\right)+(x)\left(-e^{-x}\right) \\
& =e^{-x}(1-x)=0
\end{aligned}
$$

Crit\#: $x=1$

$$
f(1)=(1)\left(e^{-1}\right)=e^{-1}=\frac{1}{e}
$$

$$
f^{\prime \prime}(x)=\left(-e^{-x}\right)(1-x)+\left(e^{-x}\right)(-1)
$$

$$
=e^{-x}(-1+x-1)
$$

$$
=e^{-x}(x-2)=0
$$

inf\#: $x=2$

$$
f(2)=2 e^{-2}=\frac{2}{e^{2}}
$$

$f(x)$ defined for all x, so No VA when $x \rightarrow \infty, e^{-x} \rightarrow 0$, so $y \rightarrow 0$ $y=0$ is HA. (on right side)
When $x \rightarrow-\infty, e^{-x} \rightarrow \infty, x e^{-x} \rightarrow-\infty$ (n oHA on left side)

6. Evaluate the following integrals:
a)
b)

$$
\begin{aligned}
\int \frac{x^{3}-x+1}{x^{2}} d x & =\int\left(x^{3}-x+1\right)\left(x^{-2}\right) d x \\
& =\int\left(x-x^{-1}+x^{-2}\right) d x \\
& =\frac{1}{2} x^{2}-\ln |x|-x^{-1}+C
\end{aligned}
$$

7. Solve $\int x^{3} \ln x d x$

Let $u=\ln x$

$$
d u=\frac{1}{x} d x
$$

$$
\begin{aligned}
d v & =x^{3} d x \\
v & =\frac{1}{4} x^{4}
\end{aligned}
$$

$$
\begin{aligned}
\int u d v=u v & -\int v d u \\
\int x^{3} \ln x d x & =\frac{1}{4} x^{4} \ln x-\int\left(\frac{1}{4} x^{4}\right)\left(\frac{1}{x} d x\right) \\
& =\frac{1}{4} x^{4} \ln x-\frac{1}{4} \int x^{3} d x \\
& =\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{x^{3}}{e^{x^{+}}} d x=\int\left(\frac{1}{4} d u\right)\left(\frac{1}{e^{u}}\right)=\frac{1}{4} \int e^{-u} d u \\
& \text { Let } u=x^{4} \\
& \text { Then } d u=4 x^{3} d x \\
& \frac{1}{4} d u=x^{3} d x \\
& =\frac{1}{4}\left(\frac{e^{-u}}{-1}\right)+C \\
& =-\frac{1}{4} e^{-x^{4}}+C
\end{aligned}
$$

