

Math 12
Test 4

You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 6 of the following 7 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Find the area of the region between $y=3 x-x^{2}$ and the x-axis, from $x=0$ to $x=4$.

Be sure to sketch a graph first!

$$
\begin{aligned}
& y=x(3-x)(0,0)(3,0) \\
& A=\int_{0}^{3}\left[\left(3 x-x^{2}\right)-0\right] d x+\int_{3}^{4}\left[0-\left(3 x-x^{2}\right)\right] d x \\
&=\left[\frac{3}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{3}+\left[-\frac{3}{2} x^{2}+\frac{1}{3} x^{3}\right]_{3}^{4} \\
&=\left[\left(\frac{27}{2}-9\right)-(0-0)\right]+\left[\left(-24+\frac{64}{3}\right)-\left(-\frac{27}{2}+9\right)\right] \\
&=\frac{27}{2}-9-24+\frac{64}{3}+\frac{27}{2}-9 \\
&=27-18-24+64 / 3=-15+64 / 3 \\
&=19 / 3
\end{aligned}
$$

2. Find all four second-order partial derivatives of $f(x, y)=y e^{x}-x \ln y$. Do NOT simplify.

$$
\begin{aligned}
& f_{x}=y e^{x}-\ln y \\
& f_{y}=e^{x}-x y^{-1} \\
& f_{x x}=y e^{x} \\
& f_{x y}=e^{x}-\frac{1}{y}
\end{aligned}
$$

$$
f_{y y}=0+x y^{-2}=\frac{x}{y^{2}}
$$

$$
f y x=e^{x}-\frac{1}{y}
$$

3. Find and classify the critical points of $f(x, y)=x^{3}-y^{3}+6 x y$.

$$
\begin{aligned}
& f_{x}=3 x^{2}+6 y=0 \rightarrow x^{2}+2 y=0 \rightarrow y=\frac{-x^{2}}{2} \\
& f y=-3 y^{2}+6 x=0 \longrightarrow-y^{2}+2 x=0 \longrightarrow \downarrow \\
& f_{x x}=6 x \quad-\left(\frac{-x^{2}}{2}\right)^{2}+2 x=0 \\
& \begin{array}{l}
f y y=-6 y \\
f x y=6
\end{array}\{D(x, y)=-36 x y-36 \\
& -\frac{x^{4}}{4}+2 x=0 \\
& x^{4}-8 x=0 \\
& x\left(x^{3}-8\right)=0 \\
& x=0, x=2 \\
& D(2 .-2)=-36(-4)-36>0 \\
& f_{x x}(2,-2)=6(2)>0,(2,-2) \text { gives a min } \\
& \downarrow \quad+ \\
& y=0 \quad y=-2
\end{aligned}
$$

4. Suppose two products have demand equations $D_{1}=500+\frac{10}{p_{1}+2}-5 p_{2}$ and $D_{2}=400-2 p_{1}+\frac{7}{p_{2}+3}$, where p_{1} and p_{2} are the respective prices of the products. Are the products competitive, complementary, or neither? Give an example of two products that might behave this way.
$\left.\begin{array}{l}\frac{\partial D_{1}}{\partial p_{2}}=-5<0 \\ \frac{\partial D_{2}}{\partial p_{1}}=-2<0\end{array}\right\} \begin{array}{r}\text { products are complementary, } \\ \text { like hot dogs hot dog buns }\end{array}$
5. Using four rectangles, estimate the area under the curve $y=\frac{3}{x}$ between $x=1$ and $x=7$. Then find the exact area.

using lower ones:

Width of rectangle $=\frac{6}{4}=\frac{3}{2}$

$$
\begin{aligned}
& A \approx R_{1}+R_{2}+R_{3}+R_{4} \\
& \approx \frac{3}{2} f\left(\frac{5}{2}\right)+\frac{3}{2} f(4)+\frac{3}{2} f\left(\frac{11}{2}\right) \\
& \\
& \quad+\frac{3}{2} f(7) \\
& \approx \\
& \approx \frac{3}{2}\left(\frac{6}{5}\right)+\frac{3}{2}\left(\frac{3}{4}\right)+\frac{3}{2}\left(\frac{6}{11}\right)+\frac{3}{2}\left(\frac{3}{7}\right) \\
& \approx \frac{9}{5}+\frac{9}{8}+\frac{9}{11}+\frac{9}{14} \approx 4.386
\end{aligned}
$$ coppers works, too)

$$
\begin{aligned}
A & \left.=\int_{1}^{7} \frac{3}{x} d x=\left.3 \ln |x|\right|_{1} ^{7}=3 \ln 7-3 \ln \right\rvert\, \\
& =3 \ln 7 \approx 5.838
\end{aligned}
$$

6. Calculate $\int_{4}^{\infty} e^{-x / 2} d x$.

$$
\begin{aligned}
\int_{4}^{\infty} e^{-\frac{1}{2} x} d x & =\lim _{n \rightarrow \infty} \int_{4}^{n} e^{-\frac{1}{2} x} d x \\
& =\lim _{n \rightarrow \infty}-\left.2 e^{-\frac{1}{2} x}\right|_{4} ^{n} \\
& =\lim _{n \rightarrow \infty}\left(-2 e^{-\frac{1}{2} n}+2 e^{-2}\right) \\
& =\frac{2}{e^{2}}
\end{aligned}
$$

7. Suppose a rectangular container with volume 288 cubic feet is to be built. If the bottom of the container costs $\$ 5$ per square foot and the top and sides each cost $\$ 3$ per square foot to construct, find the minimum cost of the container.

$$
\begin{aligned}
& V=288=x y z \text { (constraint) } \\
& \begin{aligned}
\cos t & =5 x y+3 x z+3 x z+3 y z+3 y z+3 x y \\
& =8 x y+6 x z+6 y z \quad \text { (minimize) }
\end{aligned}
\end{aligned}
$$

$$
F(x, y, z, \lambda)=8 x y+6 x z+6 y z-\lambda(x y z-288)
$$

$$
\begin{aligned}
& F_{x}=8 y+6 z-\lambda y z=0 \\
& F_{y}=8 x+6 z-\lambda x z=0 \\
& F_{z}=6 x+6 y-\lambda x y=0 \\
& F_{\lambda}=-x y z+288=0
\end{aligned}
$$

$$
8 x y+6 x z-\lambda x y z=0
$$

$$
\begin{gathered}
\frac{8 x y+6 y z-\lambda x y z=0}{6 x z-6 y z=0} \\
x=y
\end{gathered}
$$

$$
-(y)(y)\left(\frac{4}{3} y\right)+288=0
$$

$$
288=\frac{4}{3} y^{3}
$$

$$
216=y^{3}
$$

$$
6=y
$$

$$
x=6
$$

$$
\begin{aligned}
& 8 x y+6 y z-\lambda x y z=0 \\
& 6 x z+6 y z-\lambda x y z=0 \\
& \hline 8 x y-6 x z=0 \\
& 2 x(4 y-3 z)=0 \\
& 4 y=3 z \\
& z=\frac{4}{3} y
\end{aligned}
$$

minimum cost is $8(6)(6)+6(6)(8)+6(6)(8)=$ $288+288+288=\$ 864$

