\qquad

You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 6 of the following 7 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Find the area of the region bounded by $y=x^{3}-4 x^{2}+3 x$ and the x-axis. Be sure to sketch a graph first!

$$
\begin{aligned}
& y=x\left(x^{2}-4 x+3\right) \\
& y=x(x-3)(x-1)
\end{aligned}
$$

points on graph:

$$
(0,0)(3,0)(1,0)
$$

$$
(2,-2),(1 / 2,5 / 8)
$$

$$
\begin{aligned}
\text { Area }= & A_{1}+A_{2} \\
= & \int_{0}^{1}\left[\left(x^{3}-4 x^{2}+3 x\right)-0\right] d x \\
& +\int_{1}^{3}\left[0-\left(x^{3}-4 x^{2}+3 x\right)\right] d x \\
= & {\left[\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+\frac{3}{2} x^{2}\right]_{0}^{1}+\left[-\frac{1}{4} x^{4}+\frac{4}{3} x^{3}-\frac{3}{2} x^{2}\right]_{1}^{3} } \\
= & {\left[\left(\frac{1}{4}-\frac{4}{3}+\frac{3}{2}\right)-0\right]+\left[\left(\frac{-81}{4}+36-\frac{27}{2}\right)-\left(-\frac{1}{4}+\frac{4}{3}-\frac{3}{2}\right)\right] } \\
= & \frac{5}{12}+\left[\frac{9}{4}-\left(\frac{-5}{12}\right)\right] \\
= & \frac{5}{12}+\frac{32}{12} \\
= & \frac{37}{12}
\end{aligned}
$$

2. For $f(x, y)=\frac{\ln \left(x^{2}+5\right)}{y}$, find all four second-order partial derivatives. Do NOT simplify.

$$
\begin{aligned}
& f_{x}=\frac{\left(\frac{1}{x^{2}+5}\right)(2 x)(y)-\left[\ln \left(x^{2}+5\right)\right](0)}{y^{2}}=\frac{2 x}{\left(x^{2}+5\right) y} \\
& f_{y}=\frac{(0)(y)-\left[\ln \left(x^{2}+5\right)\right](1)}{y^{2}}=\frac{-\ln \left(x^{2}+5\right)}{y} \\
& f_{x x}=\frac{(2)\left(x^{2}+5\right)(y)-(2 x)(2 x y)}{\left[\left(x^{2}+5\right) y\right]^{2}} \quad f_{x y}=\frac{0-\left(x^{2}+5\right)(2 x)}{\left[\left(x^{2}+5\right)(y)\right]^{2}} \\
& f_{y y}=\frac{0+\left[\ln \left(x^{2}+5\right)\right](2 y)}{\left(y^{2}\right)^{2}} \quad f_{y x}=\frac{\left(\frac{-1}{x^{2}+5}\right)(2 x)\left(y^{2}\right)-0}{y^{4}}
\end{aligned}
$$

3. Find and classify the critical points of $f(x, y)=x^{3}-3 x y+y^{2}+y-5$.

$$
\begin{aligned}
& f_{x}=3 x^{2}-3 y=0 \longrightarrow 3 y=3 x^{2} \\
& f y=-3 x+2 y+1=0 \quad \begin{array}{c}
y=x^{2} \\
\downarrow \\
-3 x+2 x^{2}+1=0
\end{array} \\
& f_{x x}=6 x \\
& 2 x^{2}-3 x+1=0 \\
& f_{y y}=2 \\
& F_{x y}=-3 \\
& (x-1)(2 x-1)=0 \\
& \text { critpts: }(1,1),\left(\frac{1}{2}, \frac{1}{4}\right) \\
& D(x, y)=12 x-9 \\
& D(1,1)=12-9>0, f_{x x}(1,1)=6>0 \text {, so }(1,1) \text { gives a minimum } \\
& D(1 / 2,1 / 4)=6-9<0 \text {, so }(1 / 2,1 / 4) \text { gives a saddle point }
\end{aligned}
$$

4. Suppose p_{1} and p_{2} are the prices of two products. Also suppose $D_{1}\left(p_{1}, p_{2}\right)=\frac{100}{p_{1} \sqrt{p_{2}}}$ and $D_{2}\left(p_{1}, p_{2}\right)=\frac{500}{p_{2} \sqrt[3]{p_{1}}}$ are the demand functions for the two products (quantities). Answer the following questions, showing your work below.
a) Are these two products competitive (substitutes), complementary, or neither? (show work)

$$
\begin{array}{ll}
D_{1}=100 p_{1}^{-1} p_{2}^{-1 / 2} \quad D_{2}=500 p_{2}^{-1} p_{1}^{-1 / 3} \\
\frac{\partial D_{1}}{\partial p_{2}}=-50 p_{1}^{-1} p_{2}^{-3 / 2}<0 & \text { bothare negative, so } \\
\frac{\partial D_{2}}{\partial p_{1}}=-\frac{500}{3} p_{2}^{-1} p_{1}^{-4 / 3}<0 & \begin{array}{l}
\text { products are } \\
\text { complementary }
\end{array}
\end{array}
$$

b) An example of two products that might behave this way are
not dogs and \qquad -.
5. Using six rectangles, estimate the area under the curve $y=(x-1)^{2}$ between $x=1$ and $x=4$. Then find the exact area.

widths are all $=1 / 2$
$f(1)=0$
$f(3 / 2)=1 / 4$
$f(2)=1$
$f(5 / 2)=9 / 4 \quad\left\{\begin{array}{l}\text { heights of } \\ \text { rectangles }\end{array}\right.$
$f(3)=4$
$f(7 / 2)=25 / 4$
$f(4)=9$

$$
A \approx R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}
$$

$$
\approx\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)+(1)\left(\frac{1}{2}\right)+\left(\frac{9}{4}\right)\left(\frac{1}{2}\right)+(4)\left(\frac{1}{2}\right)+\left(\frac{25}{4}\right)\left(\frac{1}{2}\right)+(9)\left(\frac{1}{2}\right)
$$

$$
\approx \frac{1}{8}+\frac{4}{8}+\frac{9}{8}+\frac{16}{8}+\frac{25}{8}+\frac{36}{8} \approx \frac{91}{8}
$$

Exact: $A=\int_{1}^{4}(x-1)^{2} d x$

$$
=\int_{1}^{1} u^{4} u^{2} d u
$$

$$
=\left.\frac{1}{3} u^{3}\right|_{1} ^{4}=\left.\frac{1}{3}(x-1)^{3}\right|_{1} ^{4}=\frac{1}{3}(3)^{3}-\frac{1}{3}(0)^{3}=9
$$

6. Calculate $\int_{0}^{\infty} x e^{-x^{2}} d x$.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \int_{0}^{n} x e^{-x^{2}} d x \\
& =\lim _{n \rightarrow \infty} \frac{-1}{2} \int_{0}^{n} e^{n} d u \\
& =\lim _{n \rightarrow \infty} \frac{-1}{2}\left[e^{-x^{2}}\right]_{0}^{n} \\
& =\lim _{n \rightarrow \infty} \frac{-1}{2}\left(e^{-n^{2}}-e^{0}\right) \\
& =\frac{-1}{2}(0-1) \\
& =\frac{1}{2}
\end{aligned}
$$

7. Suppose that a firm produces x units of one part and y units of another needed to make a final product, and the total number of finished items produced is given by $P=12 x+20 y-x^{2}-2 y^{2}$. It costs $\$ 4$ to produce a unit of the first part, and $\$ 8$ to produce a unit of the second part. Under a budget constraint of $\$ 88$, what is the largest number of final products that can be produced?
maximize $P=12 x+20 y-x^{2}-2 y^{2}$ subject to $4 x+8 y=88$

$$
\begin{aligned}
& F(x, y, \lambda)=12 x+20 y-x^{2}-2 y^{2}-\lambda(4 x+8 y-88) . \\
& F_{x}=12-2 x-4 \lambda=0 \rightarrow 6-x-2 \lambda=0 \rightarrow x=6-2 \lambda \\
& F_{y}=20-4 y-8 \lambda=0 \rightarrow-4-2 \lambda=0 \rightarrow y=5-2 \lambda \\
& F_{\lambda}=-4 x-8 y+88=0 \rightarrow-4(6-2 \lambda)-8(5-2 \lambda)+88=0 \\
& -24+8 \lambda-40+16 \lambda+88=0 \\
& 24 \lambda+24=0 \\
& \lambda=-1 \\
& x=6+2=8 \\
& y=5+2=7
\end{aligned}
$$

8 units of first part
7 units of second part
$\max \#$ of final products is

$$
\begin{aligned}
P(8.7) & =12(8)+20(7)-(8)^{2}-2(7)^{2} \\
& =96+140-64-98 \\
& =236-162 \\
& =74
\end{aligned}
$$

74 finished products is the max

