You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 6 of the following 7 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Find the area of the region bounded by $y=x^{3}-3 x^{2}$ and $y=4 x$. Be sure to sketch a graph first!
2. Find the first-order partial derivatives of $f(x, y)=5 x \ln \left(x^{2}+y\right)$. Do NOT simplify.
3. Find and classify the critical points of $f(x, y)=-2 x^{4}+4 x y-y^{2}+4 x-2 y$.
4. For each three-dimensional surface below, determine the matching equation (a, b, c, d, or e).
a) $z=x^{2}+y^{2}$
b) $z=y^{2}-x^{2}$
c) $z^{2}-y^{2}-x^{2}=1$
d) $\frac{x^{2}}{16}+\frac{y^{2}}{25}+\frac{z^{2}}{4}=1$
e) $\quad z=5\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}$

5. Using four rectangles, estimate the area under the curve $y=x^{2}$ between $x=1$ and $x=3$. Then find the exact area.
6. Calculate $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.
7. If x thousand dollars is spent on labor and y thousand dollars is spent on equipment, the output at a factory will be $Q=60 x^{\frac{\overline{3}}{3}} y^{\frac{2}{3}}$ units. If $\$ 120,000$ is available how should this money be allocated between labor and equipment to generate the largest possible output?
