You have 50 minutes to complete this test. You must show all work to receive full credit. Work any 6 of the following 7 problems. Clearly CROSS OUT the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Find the area of the region bounded by the curves $y=4 x$ and $y=x^{3}+3 x^{2}$. Be sure to sketch a graph first!
2. Find all four second-order partial derivatives of $f(x, y)=x^{2} y e^{x}+2 x^{3} y^{2}$. Do NOT simplify.
3. Find and classify the critical points of $f(x, y)=x^{3}+y^{2}-6 x y+9 x+5 y+2$.
4. Suppose product A and product B are competitive.
a) If the price of product A goes up, the demand for product A will go
\qquad _.
b) If the price of product A goes up, the demand for product B will go
\qquad .
c) Two products that might behave this way are \qquad and
\qquad -.

Suppose product A and product B are complementary.
d) If the price of product A goes up, the demand for product A will go
\qquad .
e) If the price of product A goes up, the demand for product B will go
\qquad .
f) Two products that might behave this way are \qquad and
\qquad .
5. On a single plane, sketch and label 3 level curves of the surface $z=x y$.
6. Calculate $\int_{1}^{\infty} e^{1-x} d x$.
7. According to postal regulations, the girth (distance around) plus the length of parcels sent by $4^{\text {th }}$ class mail may not exceed 108 inches. What is the largest possible volume of a rectangular parcel with two square sides that can be sent by $4^{\text {th }}$ class mail?

