Mathematics 204

Fall 2010

Exam I

Your Printed Name: \qquad Dr. Grow

Your Instructor's Name: \qquad
Your Section (or Class Meeting Days and Time): \qquad

1. Do not open this exam until you are instructed to begin.
2. All cell phones and other electronic noisemaking devices must be turned off or completely silenced (ie. not on vibrate) for the duration of the exam.
3. Exam I consists of this cover page and 5 pages of problems containing 7 numbered problems.
4. Once the exam begins, you will have 60 minutes to complete your solutions.
5. Show all relevant work. No credit will be awarded for unsupported answers and partial credit depends upon the work you show. In particular, all integrals and determinant computations must be done by hand.
6. You may use the back of any page for extra scratch paper, but if you would like it to be graded, clearly indicate in the space of the original problem where the work is to be found.
7. The symbol [15] at the beginning of a problem indicates the point value of that problem is 15 . The maximum possible score on this exam is 100 .

	1	2	3	4	5	6	7	Sum
points earned								
maximum points	15	15	15	12	13	15	15	100

1.[15] State the order of each of the following differential equations. Are they linear or nonlinear? For each nonlinear equation, CIRCLE a term that makes it nonlinear. For each linear equation, tell whether it is homogeneous or nonhomogeneous.

Differential Equation	Order?	Linear?	Homogeneous?
$(1+y) y^{\prime \prime}+t y^{\prime}+y=e^{\prime}$	2	No	
$x^{\prime}-t \ln (t) x=e^{-t}$	1	Yes	No
$x^{\prime}-t\left(\frac{\ln (x) x)=e^{-1}}{}\right.$	1	No	
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\frac{d y}{d x}+y=0$	2	No	
$y^{\prime \prime}+t y^{\prime}+\cos ^{2}(t) y=0$	3	Yes	Yes

DO NOT SOLVE ANY OF THESE EQUATIONS.
2.[15] Find the solution of the initial value problem $y^{\prime}-\sin (t) y^{2}=0, \quad y(0)=1 / 3$.

1st order, nonlinear. Use separation of variables.

$$
\begin{aligned}
& \frac{d y}{d t}=\sin (t) y^{2} \\
& \frac{d y}{y^{2}}=\sin (t) d t \\
&-\frac{1}{y}+c_{1} \approx \int \frac{d y}{y^{2}}=-\cos (t)+c_{2} \\
&-\frac{1}{y}=-\cos (t)+c_{3} \\
& \frac{-1}{-\cos (t)+c_{3}}=y
\end{aligned}
$$

$$
\therefore y(t)=\frac{1}{\cos (t)+c} \text { is the }
$$

general solution where c is an arbitrary constant.

$$
\frac{1}{3}=y(0)=\frac{1}{\cos (0)+c}=\frac{1}{1+c}
$$

so $c=2$. Therefore

$$
y(t)=\frac{1}{2+\cos (t)}
$$

solves the I.V.P.
3.[15] Find the general solution of the differential equation $(20+t) y^{\prime}+2 y=\frac{3}{2}(20+t)$.

1st order, linear, nonhomogeneous. Placing the DE in standard form yields
(*) $y^{\prime}+\frac{2}{20+t} y=\frac{3}{2}$.
An integrating factor is

$$
\begin{aligned}
\mu(t) & =e^{\int p(t) d t}=e^{\int \frac{2}{20+t} d t} \\
& =e^{2 \ln (20+t)+q^{0}} \\
& =e^{\ln (20+t)^{2}} \\
& =(20+t)^{2}
\end{aligned}
$$

Multiplying (*) by the integrating factor produces

$$
\underbrace{(20+t)^{2} y^{\prime}+2(20+t) y}=\frac{3}{2}(20+t)^{2}
$$

Exact expression; derivative of $(20+t)^{2} y$.

Thus

$$
\frac{d}{d t}\left\{(20+t)^{2} y\right\}=\frac{3}{2}(20+t)^{2}
$$

Integrating both sides with respect to t leads to

$$
\begin{aligned}
&(20+t)^{2} y=\int \frac{3}{2}(20+t)^{2} d t \\
&=\frac{1}{2}(20+t)^{3}+c . \\
& \therefore y(t)=\frac{1}{2}(20+t)+\frac{c}{(20+t)^{2}}
\end{aligned}
$$

is the general solution of the $D E$ where c is an arbitrary constax
4.[12] Consider, BUT DO NOT SOLVE, the differential equation $y^{\prime}=\left(4-y^{2}\right) y^{2}$.
(a) Determine the equilibrium solutions (critical points) of the differential equation.
(b) Classify each equilibrium solution as asymptotically stable, unstable, or semistable. Justify your answers.
(c) If $y=y(t)$ denotes the solution of the initial value problem $y^{\prime}=\left(4-y^{2}\right) y^{2}, y(0)=1$, use your answers in part (b) to determine $\lim _{t \rightarrow \infty} y(t)$.
(a) $0=\left(4-y^{2}\right) y^{2}=(2-y)(2+y) y^{2}$
implies $y=2, y=-2$, and $y=0$ are the equilibrium solutions.
(b) The graph of $f(y)=\left(4-y^{2}\right) y^{2}$ is:

(c) Since $0<y(0)<2$ and $y=2$ is an asymptotically stable equilibrium solution,

$$
\lim _{t \rightarrow \infty} y(t)=2
$$

and the phase line of the $D E$ is:
5.[13] A 100 gallon tank originally contains 20 gallons of water and 5 pounds of salt. Then water containing $1 / 2$ pound of salt per gallon is poured into the tank at a rate of 3 gallons per minute, and the well-stirred mixture leaves at a rate of 2 gallons per minute. Set up, BUT DO NOT SOLVE, an initial value problem that models the amount of salt in the tank for times t between 0 and 80 minutes.
Let $A(t)$ denote the number of pounds of salt in the tank at time t minutes. We use:

$$
\text { Net Rate }=\text { Rate In }- \text { Rate Out. }
$$

Therefore

$$
\frac{d A}{d t}=\left(\frac{1 / 216 .}{\text { gal. }}\right)\left(\frac{3 \mathrm{gal} .}{\min .}\right)-\left(\frac{A(t) \text { ib. }}{V(t) \text { gal. }}\right)\left(\frac{2 \mathrm{gal} .}{\mathrm{min} .}\right)
$$

where $V(t)$ denotes the volume of solution in the tank at time t. Since the tank originally contains 20 gallons of solution and the tank gains 1 gallon of solution in each minute, $V(t)=20+t$. Therefore the I.V.P. that models the amount of salt in the tank for $0 \leq t \leq 80$ is

$$
\frac{d A}{d t}=\frac{3}{2}-\left(\frac{2}{20+t}\right)^{A}, \quad A(0)=5
$$

(cf. $\# 3$ for the general solution of the DE.)
6.[15] (a) Find the general solution of $2 y^{\prime \prime}-5 y^{\prime}-3 y=0$.
(b) Find the general solution of $y^{\prime \prime}+4 y^{\prime}+5 y=0$.
(c) Do the functions $f(t)=t$ and $g(t)=t e^{t}$ form a fundamental set of solutions of $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0$ on the interval $t>0$? Give reasons for your answer.
(a) $y=e^{r t}$ leads to $2 r^{2}-5 r-3=0$ or $(2 r+1)(r-3)=0$ so $r=-1 / 2$ or $r=3$. Gen. soln. $y=c_{1} e^{-t / 2}+c_{2} e^{3 t}$ where c_{1} and c_{2} are arbitrary constants.
(b) $y=e^{r t}$ leads to $r^{2}+4 r+5=0$ so $r=\frac{-4 \pm \sqrt{16-20}}{2}=\frac{-4 \pm 2 i}{2}$ $=-2 \pm i$. The general solution is $y=e^{\lambda t}\left(c_{1} \cos (\mu t)+c_{2} \sin (\mu t)\right)$ where $\lambda=-2$ and $\mu=1$. Therefore $y-e^{2 t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)$ is the general solution where c_{1} and c_{2} are arbitrary constants.
(c) Note that the number of functions $=2=$ the order of the differential equation $t^{2} f^{\prime \prime}(t)-t(t+2) f^{\prime}(t)+(t+2) f(t)=0-t(t+2) \cdot 1+(t+2) t \stackrel{\Sigma}{=}$ so $f(t)=t$ solves the differential equation for $t>0$.

\[

\]

so $g(t)=t e^{t}$ solves the differential equation for $t>0$.

$$
W(f, g)(t)=\left|\begin{array}{cc}
t & t e^{t} \\
1 & (t+1) e^{t}
\end{array}\right|=t(t+1) e^{t}-t e^{t}=t^{2} e^{t} \neq 0 \text { for } t>0
$$

Therefore, yes, the fundions $f(t)=t, g(t)=t e^{t}$ form a fundamental set of solutions of $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0$ on the interval $t>0$.
7.[15] Given that $y_{1}(x)=e^{x}$ is a solution to $x y^{\prime \prime}+(1-2 x) y^{\prime}+(x-1) y=0$ on the interval $x>0$, use reduction of order to find a second solution that is not a constant multiple of y_{1}.
Assume that a second solution has the form $y_{2}(x)=u(x) y_{1}(x)=e^{x} u(x)$ where $u=u(x)$ is an appropriately chosen nonconstant function of x. Then

$$
y_{2}^{\prime}=e^{x} u+e^{x} u^{\prime} \text { and } y_{2}^{\prime \prime}=e^{x} u+e^{x} u^{\prime}+e^{x} u^{\prime}+e^{x} u^{\prime \prime}=e^{x}\left(u+2 u^{\prime}+u^{\prime \prime}\right)
$$

We want $x y_{2}^{\prime \prime}+(1-2 x) y_{2}^{\prime}+(x-1) y_{2}=0$ so substituting from above yields

$$
x e^{x}\left(u+2 u^{\prime}+u^{\prime \prime}\right)+(1-2 x) e^{x}\left(u+u^{\prime}\right)+(x-1) e^{x} u=0
$$

or

$$
x\left(u+2 u^{\prime}+u^{\prime \prime}\right)+(1-2 x)\left(u+u^{\prime}\right)+(x-1) u=0
$$

so

$$
x u^{\prime \prime}+(\underbrace{2 x+1-2 x}_{1}) u^{\prime}+(\underbrace{x+1-2 x+x-1}_{0}) u=0 .
$$

Therefore $x u^{\prime \prime}+u^{\prime}=0$. If we set $v=u^{\prime}$ then $v^{\prime}=u^{\prime \prime}$ so the $D E$ in u is equivalent to the first order, linear DE in v : $\quad x v^{\prime}+v=0$. The left member of this $D E$ is exact; it is the derivative of $x V$. Therefore $\frac{d}{d x}(x v)=0$, so integrating yields $x v=c_{1}$. But $v=u^{\prime}$ so substituting yields $x u^{\prime}=c_{1}$ and hence $u=\int \frac{c_{1}}{x} d x=c_{1} \ln (x)+c_{2}$. Therefore $y_{2}(x)=u(x) e^{x}=\left(c_{1} \ln (x)+c_{2}\right) e^{x}=c_{1} e^{x} \ln (x)+c_{2} e^{x}$. If we take $c_{1}=1$ and $c_{2}=0$ then we get a "clean" second solution to the DE that is not a constant multiple of $y_{1}(x)=e^{x}$ on the interval $x>0$:

$$
y_{2}(x)=e^{x} \ln (x)
$$

100 且TIII		59 IIII		191
991111		58 IIII		18
98 HHLHFI		57 III		17
97 HHII		56 HHI		16
96 LHKLHIII		55111		151
95 IHY III	100 A	54111		14
94 Htilii		53111		131
93 HHUH UHI		52 HHI		12
92 IIII		51 WH1	－	11
91 HH HHIIII		50111	100 ？	10
90 IHF III		49 HHI		9
89 WHLHI		48111		8
88 UH1		47 III		7
87 UHKHH III		4611		6
861111		45 ｜11		5
85 LHH IIII	＂98	44 II		
84 14H1 1 H 11		43 III		3
83 III		42111		2
82 HHIII		41 III		1
81 HHY III		40 LHT		0
80 HHT1		39111		
79 HH WHI		38111		
78 LHI HHIIII		371		
77 HH 1111		36	γA	Winte（41）
76 LHf 11		3511	$1-B$	Winte（35）
75 弤	74 cs	341 3311	$\therefore \mathrm{C}$	Winte（39）
73 山H1		321	ro	Willinger（42）
72 III		311		Heim（4，
71 IIII		30	$\because E$	Heim（4，
70 LHE1		29 III	$\checkmark F$	Grow（37）
691111		28 II	$v G$	Fitch（42）
68 HHWHI		27 II	$v a$	Fiten（42）
67 WH111		26	$\checkmark H$	Fitch（35）
66 UH5 III	71 D5	25	\checkmark V	He（35）
65 HHI III		241		
64 14H		23	$\checkmark K$	Heim（37）
63 HH HH		221	$\checkmark L$	Singler（39）
62 HHI		21		singler（39）
61 1111		20		
60 HHI				

Number taking exam： 426
Median： 77
Mean： 72.79
Standard Deviation：
19.46

Number receiving A＇s： 102
23.9%
Number receiving B＇s： \qquad Number receiving C＇s：$\quad 74$ Number receiving D＇s： 71 Number receiving F＇s： 100
18.5%
17.4%
16.7%
23.5%

