Mathematics 204

Fall 2011

Exam I

[1] Your Printed Name: \qquad Dr Grow
[1] Your Instructor's Name: \qquad
Your Section (or Class Meeting Days and Time): \qquad

1. Do not open this exam until you are instructed to begin.
2. All cell phones and other electronic noisemaking devices must be turned off or completely silenced (ie. not on vibrate) for the duration of the exam.
3. You are not allowed to use a calculator on this exam.
4. Exam I consists of this cover page and 6 pages of problems containing 6 numbered problems.
5. Once the exam begins, you will have 60 minutes to complete your solutions.
6. Show all relevant work. No credit will be awarded for unsupported answers and partial credit depends upon the work you show.
7. You may use the back of any page for extra scratch paper, but if you would like it to be graded, clearly indicate in the space of the original problem where the work is to be found.
8. The symbol [17] at the beginning of a problem indicates the point value of that problem is 17 . The maximum possible score on this exam is 100 .

	0	1	2	3	4	5	6	Sum
points earned								
maximum points	2	17	16	16	16	17	16	100

1. [17] Find the explicit solution to $\left(y+t^{2} y\right) y^{\prime}=2 t$ satisfying the initial condition $y(0)=-2$.

$$
\begin{aligned}
& y\left(1+t^{2}\right) y^{\prime}=2 t \quad \text { (1st order; variables separable) } \\
& y d y=\frac{2 t d t}{1+t^{2}} \\
& \int y d y=\int \frac{2 t}{1+t^{2}} d t \\
& \frac{1}{2} y^{2}=\ln \left(1+t^{2}\right)+c_{1} \\
& y= \pm \sqrt{c+2 \ln \left(1+t^{2}\right)} \quad\left(2 c_{1}=c\right. \text { is an arbitrary constant) }
\end{aligned}
$$

We need to choose the minus sign in order to meet the initial condition $y(0)=-2$:

$$
y(t)=-\sqrt{c+2 \ln \left(1+t^{2}\right)}
$$

$-2=y(0)=-\sqrt{c+\underbrace{2 \ln (1)}_{0}}$ so we must choose $c=4$.
Want

$$
y(t)=-\sqrt{4+2 \ln \left(1+t^{2}\right)}
$$

2.[16] Solve the differential equation $\underbrace{t^{5} y^{\prime}+6 t^{4} y=e^{-t}}$ on the interval $t>0$. $1^{\text {st }}$ order; linear equation.

$$
y^{\prime}+\frac{6}{t} y=\frac{e^{-t}}{t^{5}}
$$

Integrating factor: $e^{\int p(t) d t}=e^{\int \frac{6}{t} d t}=e^{6 \ln (t)+\epsilon^{1}}=e^{\ln \left(t^{6}\right)}=t^{6}$.

$$
\begin{aligned}
& t^{6}\left[y^{\prime}+\frac{6}{t} y\right]=t^{6}\left[\frac{e^{-t}}{t^{5}}\right] \\
& \underbrace{t^{6} y^{\prime}+6 t^{5} y}_{\text {exact! }}=t e^{-t} \\
& \frac{d}{d t}\left[t^{6} y\right]=t e^{-t}
\end{aligned}
$$

Integrate beth sides:

$$
t^{6} y=\int \frac{d}{d t}\left[t^{6} y\right] d t=\int \underbrace{t}_{U} e^{-t} \frac{d t}{d r}=-t e^{-t}-\int-e^{-t} d t=-t e^{-t}-e^{-t}+c
$$

$$
y(t)=\frac{-(t+1) e^{-t}}{t^{6}}+\frac{c}{t^{6}}
$$

where c is an arbitral constant.
3.[16] A tank originally contains 100 gallons of water with 50 pounds of salt dissolved in it. Water containing 2 pounds of salt per gallon is entering the tank at a rate of 4 gallons per minute, and the well-stirred mixture leaves the tank at a rate of 5 gallons per minute. Write, BUT DO NOT SOLVE, an initial value problem that models the amount of salt in the tank for times in the interval $0 \leq t \leq 100$ minutes.

Net rate of change $=$ of salt in tank

Rate at which salt enters tank.

Rate at which
salt leaves tank

$$
\frac{d A}{d t}=8-\frac{5 A}{100-t}
$$

$$
A(0)=50
$$

$t($ min $)$	$V(t)$ gal.
0	100
1	99
2	98
\vdots	
t	$100-t$

4.[16] Find the general solution of the following differential equations.
(a) $2 y^{\prime \prime}+6 y^{\prime}+5 y=0 \quad y=e^{r t}$ leads to $2 r^{2}+6 r+5=0$. Then the quadratic formula $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ yields $r=\frac{-6 \pm \sqrt{36-40}}{4}=\frac{-6 \pm 2 i}{4}=-\frac{3}{2} \pm \frac{1}{2} i$. The general solution is $y=e^{\lambda t}\left[c_{1} \cos (\mu t)+c_{2} \sin (\mu t)\right]$ where $\lambda=-\frac{3}{2}$ and $\mu=\frac{1}{2}$. $\therefore y(t)=e^{-\frac{3}{2} t}\left[c_{1} \cos \left(\frac{t}{2}\right)+c_{2} \sin \left(\frac{t}{2}\right)\right]$ where c_{1}, c_{2} are arbitrary constants.
(b) $4 y^{\prime \prime}-20 y^{\prime}+25 y=0 \quad y=e^{r t}$ leads to $4 r^{2}-20 r+25=0$ or $(2 r-5)^{2}=0$ so $r=\frac{5}{2}$ with multiplicity two. The general solution is

$$
y(t)=c_{1} e^{\frac{5}{2} t}+c_{2} t e^{\frac{5}{2} t}
$$

where E_{1}, C_{2} are arbitrary constants.
5.[17] Find the general solution of the differential equation $y^{\prime \prime}-y^{\prime}-2 y=8 e^{3 /}$. (*)
$y=e^{r t}$ in $y^{\prime \prime}-y^{\prime}-2 y=0$ leads to $r^{2}-r-2=0$ or $(r-2)(r+1)=0$ So $r=2$ or $r=-1$. Therefore $y_{c}(t)=c_{1} e^{2 t}+c_{2} e^{-t}$ is the complementary solution of $(*)$; ie, the general solution of the associated homogeneous equation $y^{\prime \prime}-y^{\prime}-2 y=0$. The method of undetermined coefficients suggests a trial particular solution of (*) of the form $y_{p}(t)=A e^{3 t}$ where A is a constant to be determined so y_{p} solves (t). Then $y_{p}^{\prime}=3 A e^{3 t}$ and $y_{p}^{\prime \prime}=9 A e^{3 t}$ so $y_{p}^{\prime \prime}-y_{p}^{\prime}-2 y_{p}=8 e^{3 t}$ is equivalent to $9 A e^{3 t}-3 A e^{3 t}-2 A e^{3 t}=8 e^{3 t}$ and hence $4 A=8$ so $A=2$, Thus $y_{p}(t)=2 e^{3 t}$ is a particular solution of (t). The general solution of $(*)$ is $y=y_{c}+y_{p}$ or $y(t)=c_{1} e^{2 t}+c_{2} e^{-t}+2 e^{3 t}$ where c_{1}, c_{2} are arbitrary
constants.
6. [16] Given that $y_{1}(t)=t^{2}$ is a solution of the differential equation $t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0$, use reduction of order to find a second linearly independent solution on the interval $t>0$.
Assume $y_{2}(t)=u(t) y_{1}(t)=u(t) t^{2}$ is a second solution of the $D E$ where $u=u(t)$ is a function to be determined so that

$$
\text { (*) } \quad t^{2} y_{2}^{\prime \prime}(t)-3 t y_{2}^{\prime}(t)+4 y_{2}(t)=0 \quad \text { for all } t>0 \text {. }
$$

Note that $y_{2}^{\prime}=t^{2} u^{\prime}+2 t u$ and $y_{2}^{\prime \prime}=t^{2 \prime \prime} u^{\prime \prime}+2 t u^{\prime}+2 t u^{\prime}+2 u=t^{2} u^{\prime \prime}+4 t u^{\prime}+2 u$, Substituting these expressions for y_{2} and its derivatives in ($*$) yields

$$
t^{2}\left(t^{2} u^{\prime \prime}+4 t u^{\prime}+2 u\right)-3 t\left(t^{2} u^{\prime}+2 t u\right)+4 u t^{2}=0 .
$$

Simplifying, we have

$$
\begin{aligned}
& t^{4} u^{\prime \prime}+\left(4 t^{3}-3 t^{3}\right) u^{\prime}+\left(2 t^{2}-6 t^{2}+4 t^{2}\right) u=0 \\
& t^{4} u^{\prime \prime}+t^{3} u^{\prime}=0
\end{aligned}
$$

Let $u^{\prime}=v$. Then $u^{\prime \prime}=v^{\prime}$ so the above equation is equivalent to

$$
t y^{\prime}+v=0
$$

The left member is exact (so we don't need an integrating factor for this $1^{\text {st }}$ order linear DE):

$$
\frac{d}{d t}[t v]=0
$$

Integrating both sides yields

$$
t v=c_{1}
$$

Hence

$$
u^{\prime}=v=\frac{c_{1}}{t}
$$

So integrating again yields $u=c_{1} \ln (t)+c_{2}$. Consequently $y_{2}(t)=u(t) \cdot t^{2}=$ $\left(c_{1} \ln (t)+c_{2}\right) t^{2}=c_{1} t^{2} \ln (t)+c_{2} t^{2}$. Take $c_{1}=1$ and $c_{2}=0$ to get a solution that is linearly independent from $y_{1}, y_{2}(t)=t^{2} \ln (t)$, on $t>0$.
Check: $W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{ll}t^{2} & t^{2} \ln (t) \\ 2 t & t+2 t \ln (t)\end{array}\right|=t^{3} \neq 0$ on $t>0$.

100 WH LHK IIII	591	19	
99 UHTLHE UHT UHT	58 HHII	18	
98 UH WHI IIII 3．As	57111	17	
97 1HH HH1 UH\％HH	56 UH1	62 Fs 16	
96 لHH1HT UHT WH HH	55 II	15	
95 N4 DHE HH IHY III	54 UHT	14	
94 WHi Hfi UHi il	53 HI	13	
93 UHK WHII	521	12	
92 WH LHTIII	511	11	
91 HH LH HH	50111	10	
90 UHH IIII	49 IIII	9	
89 UH111	48 II	8	
88 HH LHF1	47 II	7	
87 HH1111	461111	6	
86 LHY WH HHI 109 Bs	451	5	
85 HH HH	4411	4	
84 HHLHH HHII	431	3	
83 山年 UHIII	421	2	
82 HH HII	41	1	
81 WHY IIII	40	0	
80 HH 1111	39		
79 HHIIII	38		
781111	371		
77 111	361		
76 LHF I	3511		
75 HH111 उOCS	34 III		
74 HH1	33		
73 LH	321		
72 IIII	31		
71 WH゙11	301		
70 HH 11	29		
69 HHI	281		
68 WHIIII	271		
67	261		
66 HH	25		
$65 \mathrm{III} \quad 39 \mathrm{DS}$	24 I		
64 II	231		
63 III	221		
62 HH	21		
61 \｜	20		
60 HH5			
Number taking exam： 452		Number receiving A＇s： 182	40．3\％
Median： 85		Number receiving B＇s： 109	24.1
Mean： 80.51		Number receiving C＇s： 60	13.3
Standard Deviation： 17.60		Number receiving D＇s： 39	8.6
		Number receiving F＇s：$\quad 62$	13.7

