Mathematics 204

Fall 2010

Exam II

Your Printed Name: Dr. Grow

Your Instructor's Name: _____

Your Section (or Class Meeting Days and Time): _____

1. Do not open this exam until you are instructed to begin.

- 2. All cell phones and other electronic noisemaking devices must be **turned off or completely silenced** (i.e. not on vibrate) for the duration of the exam.
- 3. Exam II consists of this cover page, 5 pages of problems containing 6 numbered problems, and a short table of Laplace transforms.
- 4. Once the exam begins, you will have 60 minutes to complete your solutions.
- 5. Show all relevant work. No credit will be awarded for unsupported answers and partial credit depends upon the work you show. In particular, all integrals and determinant computations must be done by hand.
- 6. You may use the back of any page for extra scratch paper, but if you would like it to be graded, clearly indicate in the space of the original problem where the work is to be found.
- 7. The symbol [17] at the beginning of a problem indicates the point value of that problem is 17. The maximum possible score on this exam is 100.

	1	2	3	4	5	6	Sum
points earned							
maximum points	17	17	16	16	17	17	100

$$y'' + y' + \frac{1}{4}y = \frac{e}{4t^2}$$

1.[17] Find the general solution of $4y'' + 4y' + y = \frac{e}{t^2}$ on the interval t > 0.

 $y = e^{rt}$ in 4y'' + 4y' + y = 0 leads to $4r^2 + 4r + 1 = 0$ so (2r+1) = 0and $r = -\frac{1}{2}$ (multiplicity two). Consequently, $y_1(t) = e^{-\frac{1}{2}}$ and $y_2(t) = te^{-\frac{1}{2}}$ form a fundamental set of solutions to 4y"+4y'+y=0 on any interval since

$$W(y_{1}, y_{2})(t) = \begin{vmatrix} e^{\frac{1}{2}t} & te^{\frac{1}{2}t} \\ -\frac{1}{2}e^{\frac{1}{2}t} & (1-\frac{1}{2})e^{\frac{1}{2}t} \end{vmatrix} = (1-\frac{1}{2})e^{\frac{1}{2}t} + \frac{1}{2}e^{\frac{1}{2}t} = e^{\frac{1}{2}t} \neq 0$$

Thus $y_c(t) = c_i e^{\tau_2} + c_2 t e^{\tau_2}$ is the complementary solution for the nonhomogeneous equation. We use variation of parameters to find a particular solution to the nonhomogeneous equation:

$$y_{p}(t) = u_{1}(t)y_{1}(t) + u_{2}(t)y_{2}(t) = u_{1}(t)e^{-y_{2}} + u_{2}(t)te^{-y_{3}}$$

where

$$u_{1} = \int \frac{-9.42}{W} dt = \int \frac{e}{4t^{2}} \cdot te^{7t} dt = -\frac{1}{4} \int \frac{1}{t} dt = -\frac{1}{4} \ln|t| + \sqrt{7},$$

nd
$$\int \frac{e^{-t/2}}{W} dt = \int \frac{e^{-t/2}}{e^{-t}} dt = -\frac{1}{4} \int \frac{1}{t} dt = -\frac{1}{4} \ln|t| + \sqrt{7},$$

$$u_{2} = \int \frac{g y'}{W} dt = \int \frac{\frac{e^{-4y_{2}}}{4t^{2}} \cdot \frac{e^{-4y_{2}}}{e}}{e^{-t}} dt = \frac{1}{4} \int \frac{1}{t^{2}} dt = -\frac{1}{4t} + e^{t}.$$

Therefore,
$$y_p(t) = -\frac{1}{4}h_n(t)e^{\frac{1}{2}} - \frac{1}{4}te^{-\frac{1}{2}} = -\frac{1}{4}h_n(t)e^{\frac{1}{2}} - \frac{1}{4}e^{-\frac{1}{4}}$$
 is a particular

solution of the nonhanogeneous equation on the interval t > 0. Thus,

$$y(t) = c_1 e^{-t/2} + c_2 t e^{-t/2} - \frac{1}{4} ln(t) e^{-t/2}$$
 (c, c₂ arbitrary constants)

is the general solution of the nonhomogeneous equation on the interval t>0.

Note: We absorbed the term $-\frac{1}{4}e^{\frac{t}{2}}$ in the particular solution into the term cietz in the general solution since c is an arbitrary constant.

2.[17] Consider the differential equation y''' - y = 7e'

(a) Classify the differential equation by giving its order, stating whether it is linear or nonlinear, homogeneous or nonhomogeneous, and whether it has constant or variable coefficients. The DE is of Hird

order, linear, nonhomogeneous, and has constant coefficients.

(b) Which of the following solution methods are valid for solving this differential equation? If the method is valid, give a potential drawback in using this method.

Method of Undetermined Coefficients: Valid; differentiating the trial particular solution and solving for cons Variation of Parameters: Valid; need to evaluate four third-order determinants. Laplace Transform: Valid; messy partial fraction decompositions (c) Find the general solution of the differential equation. The identity $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ may be useful. $y = e^{rt}$ in y'' - y = 0 leads to $0 = r^3 - 1 = (r - 1)(r^2 + r + 1)$ so r = 1 or $r = -\frac{1 \pm \sqrt{1-4}}{2} = -\frac{1}{2} \pm i \sqrt{3} . \text{ Therefore } y_{2}(t) = c_{1}e^{t} + e^{-t/2}(c_{2}cos(\sqrt{3}+t)+c_{3}sin(\sqrt{3}+t))$ is the complementary solution. Since g(t) = 7 et we would normally use a trial particular solution of the form Y(t) = Aet. However, et is a solution to the associated homogeneous equation y''-y=0 so we must modify Y by multiplying by $t^s=t'$. Therefore yp(t) = Atet is a trial solution to the nonhomogeneous equation; here A is a constant to be determined. Note that yp'= Atet + Aet by the product rule, 50 $y_p = A(t+i)e^t$. Similarly, $y_p'' = A(t+2)e^t$ and $y_p'' = A(t+3)e^t$. We want yp - yp = 7et, so substituting we have A(t+3)et - Atet = 7et. Simplifying yields 3Aet=7et so A= = . Thatis, yp= = = tet is a particular solution. Consequently, the general solution y = yc+yp is $y(t) = c_{e}^{et} + e^{-t/2} (c_{2}\cos(\frac{\sqrt{3}}{2}t) + c_{3}\sin(\frac{\sqrt{3}}{2}t)) + \frac{7}{3}te^{t}$

where c, c, and c, are arbitrary constants.

3.[16] (Please use 32 ft/sec^2 as the acceleration of gravity in this problem.) A body weighing 8 pounds hangs from a vertical spring attached to the ceiling. At its equilibrium position, the body stretches the spring 1/2 ft from its natural length. The body is started in motion from the equilibrium position with an initial velocity of 4 ft/sec in the downward direction.

(a) Assuming that there is no damping and that the body is acted on by a downward external force of $3\cos(2t)$ pounds, set up, **BUT DO NOT SOLVE**, an initial value problem describing the motion of the body.

$$mu' + 8u' + ku = f(t) \mod the motion of the body where 8=0, f(t) = 3eos(2t),$$

$$mg = weight so m = \frac{8}{9} = \frac{8}{32} = \frac{1}{4} slug, and ku_0 = weight so k = \frac{8}{u_0} = \frac{8}{1/2} = 16 \ 16/5.$$
Thus
$$\frac{1}{4}u'' + 1bu = 3cos(2t), \quad u(0) = 0, \quad u'(0) = 4,$$

is an IVP modeling the vertical displacement u(t) of the body from its static equilibrium position (b) If the given downward external force is replaced by a force of $3\cos(\omega t)$ pounds, find the value of the frequency ω which will cause resonance.

$$\frac{1}{4}u'' + 16u = 3\cos(wt) \quad \text{would be the DE modeling the motion of the body}$$

in this case. The associated homogeneous equation $\frac{1}{4}u'' + 16u = 0$ has general solution
 $u(t) = c_1 \cos(8t) + c_2 \sin(8t)$ so the natural frequency of the freely oscillating system is 8.
For resonance, we must have the frequency of the forcing term equal to the natural
frequency; i.e. $w=8$ is needed for resonance.
4.[16] Find the general solution of $t^2y'' + 3ty' + y = 0$ on the interval $t > 0$.
This is an Euler equation (note the variable coefficients) so $y(t) = t^m$ in $t^2y'' + 3ty' + y = 0$
leads to $m(m-1) + 3m + 1 = 0$. Hence $0 = m^2 + 2m+1 = (m+1)^2$ so $m = -1$ with
multiplicity two. Therefore $y_1(t) = t^{-1}$ and $y_2(t) = t^{-1}h(t)$ form a fundamental set
of solutions on the interval $t > 0$ since
 $W(y_1, y_2)(t) = \begin{pmatrix} t^{-1} & t^{-1}h(t) \\ -t^{-2} & t^{-1}t^{-1} - t^{-2}h(t) \end{pmatrix} = t^{-3} - t^{-3}h(t) + t^{-3}h(t) = t^{-3} \neq 0$.

Thus,
$$y(t) = c_1 t' + c_2 t' \ln(t)$$
, where c and c are arbitrary constants, is the general solution of the equation on $t > 0$.

5.[17] Use the definition of the Laplace transform, $\mathcal{L}\left\{f(t)\right\} = \int_{0}^{\infty} f(t)e^{-st}dt$ for those values of s for which this improper integral converges, to find the Laplace transform of the function

$$f(t) = \begin{cases} t & \text{if } 0 \le t < 1, \\ 1 & \text{if } t \ge 1. \end{cases}$$

For which values of s is the Laplace transform of f defined?

4

00

$$\mathcal{L}\left\{f\right\}(s) = \int_{0}^{s} f(t)e^{st} dt$$

$$= \int_{0}^{1} f(t)e^{st} dt + \int_{1}^{\infty} f(t)e^{st} dt$$

$$= \int_{0}^{1} \frac{t}{t}e^{st} dt + \int_{1}^{\infty} 1 \cdot e^{st} dt$$

$$f = \int_{0}^{1} \frac{t}{t}e^{st} dt + \int_{1}^{\infty} 1 \cdot e^{st} dt$$

$$= \frac{t}{t}e^{st} \int_{0}^{1} - \int_{0}^{1} \frac{e^{st}}{s} dt + \lim_{M \to \infty} \int_{1}^{M} e^{st} dt$$

$$\int_{1}^{M} e^{st} dt$$

$$= \frac{t}{t}e^{st} \int_{1}^{1} - \int_{0}^{1} \frac{e^{st}}{s} dt + \lim_{M \to \infty} \int_{1}^{M} e^{st} dt$$

$$\int_{1}^{M} e^{st} dt$$

$$= \frac{e^{st}}{t}e^{st} - \frac{e^{st}}{s^{2}} \int_{1}^{1} + \lim_{M \to \infty} \frac{e^{-st}}{s} \int_{1}^{M} t$$

$$\int_{1}^{1} e^{st} dt$$

$$= \frac{e^{st}}{t}e^{st} - \frac{e^{st}}{s^{2}} + \frac{1}{s^{2}} + \lim_{M \to \infty} \left(-\frac{e^{st}}{s} + \frac{e^{st}}{s}\right)$$

$$\int_{1}^{1} e^{st} dt$$

$$= \frac{e^{st}}{-s} - \frac{e^{st}}{s^{2}} + \frac{1}{s^{2}} + \lim_{M \to \infty} \left(-\frac{e^{st}}{s} + \frac{e^{st}}{s}\right)$$

$$\int_{1}^{1} e^{st} dt$$

$$= \int_{1}^{1} \frac{e^{st}}{s^{2}} - \frac{e^{-s}}{s^{2}} + \frac{1}{s^{2}} + \frac{e^{st}}{s}$$

$$\int_{1}^{1} e^{st} dt$$

$$= \int_{1}^{1} \frac{1}{s^{2}} - \frac{e^{-s}}{s^{2}} + \frac{1}{s^{2}} + \frac{e^{st}}{s}$$

$$\int_{1}^{1} e^{st} dt$$

$$= \int_{1}^{1} \frac{1}{s^{2}} - \frac{e^{-s}}{s^{2}} + \frac{1}{s^{2}} + \frac{e^{st}}{s}$$

$$\int_{1}^{1} e^{st} dt$$

$$= \int_{1}^{1} \frac{1}{s^{2}} - \frac{e^{-s}}{s^{2}} + \frac{1}{s^{2}} + \frac{e^{st}}{s}$$

6.[17] Use the Laplace transform to solve the initial value problem y' + y = f(t), y(0) = 2, where

$$f(t) = \begin{cases} 0 & \text{if } 0 \le t < 1, \\ 1 & \text{if } t \ge 1. \end{cases}$$

Caution: NO CREDIT will be awarded for any other method of solution. Note: $f(t) = u_1(t)$.

We take the Laplace transform of both sides of the DE:

$$\begin{aligned}
\mathcal{L}\left\{y'+y\right\}(s) &= \mathcal{L}\left\{f(t)\right\}(s) &= \mathcal{L}\left\{u_{1}(t)\right\}(s) \\
s \mathcal{L}\left\{y\right\}(s) &- y(0)^{2} + \mathcal{L}\left\{y\right\}(s) &= \frac{e^{-s}}{s} \\
Solving for \mathcal{L}\left\{y\right\}(s), we find
(s+1)\mathcal{L}\left\{y\right\}(s) &= 2 + \frac{e^{-s}}{s} \\
\mathcal{L}\left\{y\right\}(s) &= \frac{2}{s+1} + \frac{e^{-s}}{s(s+1)} \\
\end{aligned}$$
Consequently,

$$\begin{aligned}
y(t) &= \mathcal{L}^{-1}\left\{\frac{2}{s+1} + \frac{e^{-s}}{s(s+1)}\right\} &= 2e^{-t} + \mathcal{L}^{-1}\left\{e^{-s} \cdot \frac{1}{s(s+1)}\right\}. \\
Using a partial fraction decomposition, we have
$$\frac{1}{s(s+1)} &= \frac{A}{s} + \frac{B}{s+1} \\
\end{aligned}$$
where A and B are constants. Then $1 = (\frac{A}{s} + \frac{B}{s+1})^{s(s+1)} = A(s+1) + Bs. \\
To find A, set s=0: 1 = A(1) + B(0) so A = 1. \\
To find B, set s=-1: Therefore
$$\mathcal{L}^{-1}\left\{e^{-s} \cdot \frac{1}{s(s+1)}\right\} = f(t-1)u_{1}(t) \\
\end{aligned}$$
where $f(t) = \mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s} - \frac{1}{s+1}\right\} = 1 - e^{-t}. \\
Consequently \\
y(t) = 2e^{-t} + (1 - e^{(t-1)})u_{1}(t) \\
\end{aligned}$$$$

•

SHORT TABLE OF LAPLACE TRANSFORMS

f(t)	$\mathcal{L}\left\{f\left(t\right)\right\}=F(s)$
1. 1	$\frac{1}{s}$
2. e ^{at}	$\frac{1}{s-a}$
3. <i>t</i> ⁿ	$\frac{n!}{s^{n+1}}, n=1,2,3$
4. $\sin(bt)$	$\frac{b}{s^2 + b^2}$
5. $\cos(bt)$	$\frac{s}{s^2+b^2}$
6. $f'(t)$	sF(s)-f(0)
7. $f''(t)$	$s^2F(s)-sf(0)-f'(0)$
8. $e^{ct}f(t)$	F(s-c)
9. $u_{c}(t)$	s
$10. u_c(t)f(t-c)$	$e^{-cs}F(s)$

100 14111		59 LHT 11		19 11	
99 HHTII		58 HT 11		18 11	
98 LHT 1		57 HHT 111		17 1111	
97 111		56 1111		16	
96 HH	- N'	55 HHT 1		15	
95 14111	57 AS	54 141111		14 1	
94 ILH LH1		53 IHTI		13 1	
93 HH		52 IHT IHT	ILG FS	12	
92 ((1)		51 (111		11	
91 11		50 HHT 11		10	
90 11		49 HHTI		9	
89 44	- ·	48 11		8	
88 UH I		47 1/11		7	
87 IHTIIII		46 111		61	
86 441 111	67 B's	45 1		5	
85 IHT 1		44 111		4	
84 JH 1		43 HH		3	
83 141111		42 11		2	
82 JHT 11		41 1111		1	
81 HH HM		40 HT		0	
8011		39 1111			
79 HH I		38 [c. L'	Tuchendar	No This E
78 HHT I		37 441	Section	Instructor	No. Taking Lxam IL
77 144 111		36 [1]	A	Wintz	37
76 441 1		35 111	B	Wintz	34
75 111	50 CS	34 [1]	C.	Wintz	39
74 111		331	Ð	Willinger	42
72 14/11		31 111	<i>y</i>		
71 11		30 111	E	Heim	54
70 141 11		29 111	F	Grow	35
69 44111		28 141	G	Fitch	42
68 1111		27	н	Fitch	32
67 141 11		26 1		(iten	22
66 LHT 1	17 1	25 1111	2	He	29
65 HHT 11	41 95	24 111	ĸ	Heim	34
64 [1]]		23 11	6	Sinaler	33
63 HH		22 11	-	0	
62 [[]]		211			
61		20 11			
60 11					

Number taking exam: 401	Number receiving A's: <u>59</u>	14.7%
Median:67	Number receiving B's: <u>67</u>	16.7
Mean: <u>64.7</u>	Number receiving C's: 60	15.0
Standard Deviation: 22.7	Number receiving D's: 47	11.7] 10
	Number receiving F's: 168	41.9 53.0%
)
