Mathematics 315 Introduction to Mathematical Analysis Qualifying Examination for Mr. Ozkan Ozturk Spring 2012

This is a three hour examination in which you may refer at any time to your textbooks for Math 315: <u>Principles of Mathematical Analysis</u> by Walter Rudin and <u>Real Analysis</u> by H. L. Royden. However, no other aids (books, lecture notes, homework solutions, exam solutions, calculators, etc.) are permitted.

This examination consists of 8 problems of equal value, grouped into two parts. You are to solve 5 problems of your choosing, subject to the constraint that at least two problems must be chosen from Part I and at least two problems must be chosen from Part II. The minimum score for a passing grade will be 70 percent.

1. Let $\alpha(x)$ denote the fractional part of the real number x. For example,

$$\alpha(5/4) = .25$$
, $\alpha(2) = 0$, and $\alpha(\pi) = .1415926...$

- (a) Compute the total variation $T(\alpha;1,4)$ of α on the interval [1,4].
- (b) Show that the product of two functions of bounded variation on a closed bounded interval is of bounded variation on that interval.
- (c) Let f(x) = 1/x and $\beta(x) = \alpha^2(x)$. Why is f Riemann-Stieltjes integrable with respect to β on the interval [1,4]?
 - (d) Evaluate the Riemann-Stieltjes integral of f with respect to β on the interval [1,4].
- 2. (a) Determine, with proof, which of the following functions define norms on the space BV[0,1] of functions of bounded variation on the interval [0,1].

$$N_{1}(f) = T(f; 0, 1)$$

$$N_{2}(f) = |f(0)| + T(f; 0, 1)$$

$$N_{3}(f) = \int_{0}^{1} |f(x)| dx$$

$$N_{4}(f) = \sup\{|f(x)| : 0 \le x \le 1\}$$

- (b) Determine with proof, which, if any, of the norms N above on BV[0,1] make the normed linear space (BV[0,1], N) a Banach space.
- 3. Let f be the odd, 2π periodic function determined by f(0) = 0 and

$$f(x) = x(\pi - x)$$
 for $0 \le x \le \pi$.

Show, by rigorous argument, that

$$u(x,t) = \sum_{k=0}^{\infty} \frac{8\sin((2k+1)x)e^{-(2k+1)^{2}t}}{\pi(2k+1)^{3}}$$

defines a function which solves the diffusion equation $u_t - u_{xx} = 0$ in the upper halfplane t > 0 of the xt-plane, and which satisfies the initial condition u(x,0) = f(x) for $-\infty < x < \infty$.

4. Let F be a continuous real function in the closed unit cube

$$Q = \{(x, y, z) : 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1\}$$

in \mathbb{R}^3 . Show that to each positive number ε there corresponds a positive integer N and a (finite) collection f_k , g_k , h_k $(1 \le k \le N)$ of real polynomials in the interval [0,1] such that

$$\left| F(x, y, z) - \sum_{k=1}^{N} f_k(x) g_k(y) h_k(z) \right| < \varepsilon$$

for all (x, y, z) in Q.

- 5. Let f be the function defined on the interval [0,1] as follows: f(x) = 0 if x is a point of the Cantor ternary set and f(x) = 1/k if x is in one of the complementary open intervals of the Cantor set with length 3^{-k} . For example, f(1/3) = 0, f(1/2) = 1, and f(4/5) = 1/2.
 - (a) Show that f is a Lebesgue measurable function.
 - (b) Evaluate $\int_0^1 f(x) dx$.
- 6. Let $f \in L^1(\mathbb{R})$ and define the Fourier transform of f at ξ by

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-ix\xi} dx$$

for all real numbers ξ .

- (a) Show that \hat{f} is a continuous function on the entire real line.
- (b) If $\chi_{(a,b)}$ denotes the characteristic function of the bounded open interval (a,b), show that

$$\lim_{|\xi|\to\infty}\hat{\chi}_{(a,b)}(\xi)=0.$$

(c) If E is a measurable subset of the real line with $m(E) < \infty$, show that

$$\lim_{|\xi|\to\infty}\hat{\chi}_E(\xi)=0.$$

- (d) Show that $\lim_{|\xi|\to\infty} \hat{f}(\xi) = 0$.
- 7. (a) Give an example of a sequence $\{f_n\}$ of measurable functions on **R** with the following properties: $f_n \to f$ pointwise on **R**, $\|f_n\|_{L^1} \le M < \infty$ for all $n \ge 1$, and $\|f_n f\|_{L^1}$ does not converge to 0 as $n \to \infty$.
- (b) If $\{f_n\}$ is a sequence of measurable functions which converges to f pointwise on \mathbf{R} and $\|f_n\|_{L^1} \to M < \infty$, what can you conclude about $\|f\|_{L^1}$? Justify this conclusion with a proof.
- (c) Show that if $\{f_n\}$ is a sequence of measurable functions which converges to f pointwise on \mathbf{R} and $||f_n||_{t^1} \to ||f||_{t^1} < \infty$, then $||f_n f||_{t^1} \to 0$.
- 8. (a) Let f be Lebesgue integrable on \mathbf{R} . Show that

$$m(\lbrace x \in \mathbf{R} : |f(x)| \ge \lambda \rbrace) \le \frac{\|f\|_{L^1}}{\lambda}$$
 for all $\lambda > 0$.

(b) Let f be a measurable function on \mathbf{R} with the property that there is a positive number C such that

$$m(\{x \in \mathbf{R} : |f(x)| \ge \lambda\}) \le \frac{C}{\lambda}$$
 for all $\lambda > 0$.

Is it true that $f \in L^1(\mathbf{R})$? Justify your answer with either a proof or a counterexample.

(c) Generalize the results of (a) and (b) to $L^p(\mathbf{R})$ where 1 .