Mathematics 325

Final Exam Fall 2010

The last two pages of this exam consist of a table of Fourier transforms and some convergence theorems for Fourier series. Furthermore, you may find the following formulas useful on this exam.

$$\int_{0}^{x} \frac{dz}{a+b\cos(z)} = \frac{2}{\sqrt{a^{2}-b^{2}}} \operatorname{Arctan}\left(\sqrt{\frac{a-b}{a+b}}\tan\left(\frac{x}{2}\right)\right) \text{ if } a^{2} > b^{2} \text{ and } -\pi < x < \pi$$

$$\nabla^{2}u = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}u}{\partial \theta^{2}}$$

$$\nabla^{2}u = \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial u}{\partial r}\right) + \frac{1}{r^{2}}\sin(\varphi)\frac{\partial}{\partial\varphi}\left(\sin(\varphi)\frac{\partial u}{\partial\varphi}\right) + \frac{1}{r^{2}}\frac{\partial^{2}u}{\partial\theta^{2}}$$

1.(33 pts.) Classify the partial differential equation $u_{xx} + 2u_{yy} - 3u_{xy} + u_x + 2u_y = 0$ as hyperbolic, elliptic, parabolic, or none of these. If it is possible, find the general solution of this partial differential equation in the xy – plane. If it is not possible, please explain why this is so.

2.(34 pts.) (a) Use Fourier transform methods to derive the formula

$$u(x,t) = \frac{1}{2} \int_{0}^{t} \int_{x-(t-\tau)}^{x+t-\tau} f(s,\tau) \, ds \, d\tau$$

for a solution to the inhomogeneous wave equation in the xt – plane,

$$u_{u}-u_{xx}=f\left(x,t\right) ,$$

satisfying homogeneous initial conditions: $u(x,0) = 0 = u_t(x,0)$ for $-\infty < x < \infty$

(b) Compute a solution to $u_{tt} - u_{xx} = xt$ in the xt - plane which satisfies homogeneous initial conditions.

(c) Is the solution to the problem in part (b) unique? Justify your answer.

3.(33 pts.) Solve $u_t - u_{xx} = 0$ in the upper half-plane $-\infty < x < \infty$, $0 < t < \infty$, subject to the initial condition $u(x,0) = e^{-x^2}$ for $-\infty < x < \infty$.

4.(34 pts.) The material in a thin circular disk of unit radius has reached a steady-state temperature distribution. The material is held at 100 degrees Centigrade on the top half of the disk's edge and at 0 degrees Centigrade on the bottom half of its edge.

(a) Write the partial differential equation and boundary condition(s) governing the steady-state temperature function of the material.

(b) Write a formula for the steady-state temperature function of the material.

(c) What is the steady-state temperature of the material at the center of the disk? Justify your answer.

(d) What is the steady-state temperature of the material at a general point in the disk? (You must evaluate any integral expressions for credit on this part of the problem.)

5.(33 pts.) (a) Show that the Fourier sine series
$$\sum_{n=1}^{\infty} b_n \sin(n\pi\theta)$$
 of $f(\theta) = 4\theta(1-\theta)$ on $[0,1]$ is
 $4\theta(1-\theta) \approx \frac{32}{-3} \sum_{k=1}^{\infty} \frac{\sin((2k-1)\pi\theta)}{(2k-1)^3}$

(b) Show that the Fourier sine series of f converges uniformly to f on the interval [0,1].

(c) Use the results of the previous parts of this problem to find the sum of the series $\sum_{k=1}^{1} \frac{1}{(2k-1)^6}$

6.(33 pts.) Solve $\nabla^2 u = 0$ in the unit cube 0 < x < 1, 0 < y < 1, 0 < z < 1, given that

$$u(x, y, 1) = 16xy(1-x)(1-y)$$
 for $0 \le x \le 1, 0 \le y \le 1$,

and that u satisfies homogeneous Dirichlet boundary conditions on the other five faces of the cube. (You may find the results of problem 5 useful.)

A Brief Table of Fourier Transforms

$$f(x)$$
A.
$$\begin{cases} 1 & \text{if } -b < x < b, \\ 0 & \text{otherwise.} \end{cases}$$
B.
$$\begin{cases} 1 & \text{if } c < x < d, \\ 0 & \text{otherwise.} \end{cases}$$
C.
$$\frac{1}{x^2 + a^2} \quad (a > 0)$$
C.
$$\begin{cases} x & \text{if } 0 < x \le b, \\ 2b - x & \text{if } b < x < 2b, \\ 0 & \text{otherwise.} \end{cases}$$
E.
$$\begin{cases} e^{-ax} & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$
F.
$$\begin{cases} e^{ax} & \text{if } b < x < c, \\ 0 & \text{otherwise.} \end{cases}$$
G.
$$\begin{cases} e^{ax} & \text{if } -b < x < b, \\ 0 & \text{otherwise.} \end{cases}$$
H.
$$\begin{cases} e^{ax} & \text{if } c < x < d, \\ 0 & \text{otherwise.} \end{cases}$$
I.
$$e^{-ax^2} \quad (a > 0)$$
J.
$$\frac{\sin(ax)}{x} \quad (a > 0)$$

$$\hat{f}\left(\xi\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\xi x} dx$$

$$\sqrt{\frac{2}{\pi}} \frac{\sin(b\xi)}{\xi}$$

$$\frac{e^{-ic\xi} - e^{-id\xi}}{i\xi\sqrt{2\pi}}$$

$$\sqrt{\frac{\pi}{2}} \frac{e^{-a|\xi|}}{a}$$

$$\frac{-1 + 2e^{-ib\xi} - e^{-2ib\xi}}{\xi^2\sqrt{2\pi}}$$

$$\frac{1}{(a + i\xi)\sqrt{2\pi}}$$

$$\frac{e^{(a - i\xi)c} - e^{(a - i\xi)b}}{(a - i\xi)\sqrt{2\pi}}$$

$$\sqrt{\frac{2}{\pi}} \frac{\sin(b(\xi - a))}{\xi - a}$$

$$\frac{e^{ic(a - \xi)} - e^{id(a - \xi)}}{i(\xi - a)\sqrt{2\pi}}$$

$$\frac{1}{\sqrt{2a}} e^{-\xi^2/(4a)}$$

$$\begin{cases} 0 & \text{if } |\xi| \ge a, \\ \sqrt{\frac{\pi}{2}} & \text{if } |\xi| \le a. \end{cases}$$

Convergence Theorems

Consider the eigenvalue problem

(1) $X''(x) + \lambda X(x) = 0$ in a < x < b with any symmetric boundary conditions

and let $\Phi = \{X_1, X_2, X_3, ...\}$ be the complete orthogonal set of eigenfunctions for (1). Let f be any absolutely integrable function defined on $a \le x \le b$. Consider the Fourier series for f with respect to Φ :

$$f(x) \approx \sum_{n=1}^{\infty} A_n X_n(x)$$

where

$$A_n = \frac{\langle f, X_n \rangle}{\langle X_n, X_n \rangle} \quad (n = 1, 2, 3, ...).$$

Theorem 2. (Uniform Convergence) If

(i) f(x), f'(x), and f''(x) exist and are continuous for $a \le x \le b$ and

(ii) f satisfies the given symmetric boundary conditions,

then the Fourier series of f converges uniformly to f on [a,b]

Theorem 3. $(L^2 - \text{Convergence})$ If

$$\int_{0}^{b} \left| f\left(x\right) \right|^{2} dx < \infty$$

then the Fourier series of f converges to f in the mean-square sense in (a,b).

Theorem 4. (Pointwise Convergence of Classical Fourier Series)

(i) If f is a continuous function on $a \le x \le b$ and f' is piecewise continuous on $a \le x \le b$, then the classical Fourier series (full, sine, or cosine) at x converges pointwise to f(x) in the open interval a < x < b.

(ii) If f is a piecewise continuous function on $a \le x \le b$ and f' is piecewise continuous on $a \le x \le b$, then the classical Fourier series (full, sine, or cosine) converges pointwise at every point x in $(-\infty, \infty)$. The sum of the Fourier series is

$$\sum_{n=1}^{\infty} A_n X_n \left(x \right) = \frac{f\left(x^+ \right) + f\left(x^- \right)}{2}$$

for all x in the open interval (a,b).

Theorem 4 ∞ . If f is a function of period 2*l* on the real line for which f and f' are piecewise continuous, then the classical full Fourier series converges to $\frac{f(x^+) + f(x^-)}{2}$ for every real x

$$\frac{\text{#}4}{\text{H}} = \frac{3}{4} \frac{3}{2} \frac{3}{2} - \frac{3}{2} \frac{3}{2} \frac{3}{2} + \frac{3}{2} \frac{3}{2} \frac{3}{2} - \frac{3}{2} \frac{3}{$$

to consequently (4) is equivalent to $-\frac{\partial u}{\partial z \partial y} + \frac{\partial u}{\partial z} + \frac{\partial u}{\partial y} = 0.$ (**)

Unfortunately, the techniques that allow us to solve
$$u_{32} + \alpha u_{33} = 0$$
 or $u_{4} + \beta u_{33}$
do not apply to $(**)$. Therefore we conclude that it is not possible
to solve $(*)$, at least with the techniques of solution covered in
this course.

3-14. s rele.

Note 1: Using the method of separation of variables in (***) leads to
formal solutions of the form
$$u(\underline{s}, \eta) = \sum_{n=1}^{\infty} c_n e^{(\frac{3\lambda n}{4+\lambda n}S - \lambda \eta)}$$

where $c_{1,c_{n},-...}$ and $\lambda_{1,\lambda_{n},...}$ are arbitrary constants.
Note 2: Using the change of dependent variable $u(x,y) = v(x,y)e^{10x+7y}$
in (*) produces the equivalent equation
(+) $(\frac{2}{2x} - 2\frac{3}{2y})(\frac{2}{2x} - \frac{3}{2y})v + 12v = 0$.
Then the change of independent variables
 $\underline{3} = x$
 $\eta = 3x + 2y$
in (+) leads to the equivalent equation
(+) $\frac{2^{2}v}{2g^{2}} - \frac{2^{2}v}{2g^{2}} + 12v = 0$.
But (+) is a special case of the telegraph equation
 $\frac{3^{2}v}{2g^{2}} - \frac{c^{2}\delta^{2}v}{2g^{2}} + 2\beta\frac{3v}{2g} + \kappa v = 0$.

with
$$C = 1$$
, $\beta = 0$, and $\alpha = 12$. (Seel "PDEs with BVPs with
Applications" (third edition) by Mark Pinsky.) It can be shown that
the solution to (ff) satisfying the initial conditions

(##)
$$V(\eta, o) = f_i(\eta)$$
 and $\frac{\partial V}{\partial \xi}(\eta, o) = f_2(\eta)$ for $-\infty < \eta < \infty$

$$V(\eta, s) = \frac{1}{2} \int_{-\frac{s}{2}}^{\frac{s}{2}} f_2(\eta + s) J_0(\sqrt{12s^2 - 12s^2}) ds$$

+ $\frac{1}{2} (f_1(\eta + s) + f_1(\eta - s))$
- $\frac{\sqrt{12}}{2} \int_{-\frac{s}{2}}^{\frac{s}{2}} f_2(\eta + s) J_1(\sqrt{12s^2 - 12s^2}) ds$

where J_0 and J_1 are the Bessel functions of orders 0 and 1, respectively. (See Pinsky's book cited above, pp. 461-462 and exercise 8.5.4.) Of course, this is far beyond what was covered in our Math 325 class but I thought people might want to know how to solve this PDE.

(b) See the bonus portion of problem 3 on Exam II where it is shown
that
$$u(x,t) = \frac{xt^3}{6}$$
. This

(c) Suppose that u is a solution to the problem in part (a) such that, for each fixed t in $(-\infty,\infty)$, u, u_t, u_x, u_{xt}, u_{xx}, and u_{tt} are square integrable functions of x and (im u_x(x,t) = 0 = lim u_t(x,t). Then $|x| \rightarrow \infty$ $|x| \rightarrow \infty$ $|x| \rightarrow \infty$

[Note that the square-integrability hypotheses imply that the energy function of W is finite for all t in $(-\infty,\infty)$.] The square-integrability hypotheses allow differentiation of the energy function of W:

$$\frac{dE}{dt} = \frac{d}{dt} \int_{-\infty}^{\infty} \left[\frac{1}{2} w_{t}^{2}(x,t) + \frac{1}{2} w_{x}^{2}(x,t) \right] dx = \int_{-\infty}^{\infty} \left[w_{t}(x,t) w_{t}(x,t) + w_{x}(x,t) \right] dx$$

and the decay conditions and integration by parts show

$$\frac{dE}{dt} = \int_{-\infty}^{\infty} w_{t}(x_{i}t) w_{t}(x_{i}t) dx + w_{t}(x_{i}t) w_{x}(x_{i}t) \bigg| - \int_{-\infty}^{\infty} w_{t}(x_{i}t) w_{xx}(x_{i}t) dx = \int_{-\infty}^{\infty} w_{t}(x_{i}t) \bigg[w_{tt}(x_{i}t) - w_{xx}(x_{i}t) \bigg] dx = 0,$$

50 E = E(t) is a constant function on (-00,00). Since

$$E(o) = \int_{-\infty}^{\infty} \left[\frac{1}{2} w_t^2(x, o) + \frac{1}{2} w_x^2(x, o) \right] dx = 0$$

it follows that $E(t) = 0$ for all $-\infty < t < \infty$. By the vanishing theorem,
 $w_t(x, t) = 0 = w_x(x, t)$ for all $-\infty < x < \infty$ and each fixed t in $(-\infty, \infty)$.
Then $w(x, t) = \text{constant}$ in the xt-plane and $w(x, o) = 0$ implies $w(x, t) = 0$
for all $-\infty < x < \infty$ and all $-\infty < t < \infty$. That is, $v \equiv u$ so the
solution to the problem in part (a) satisfying the square-integrability and
decay conditions is unique.

 $\begin{bmatrix} \#4 \end{bmatrix}$ (a) Let $u = u(r; \theta)$ denote the steady-state temperature of the material in the disk at the point whose polar coordinates are $(r; \theta)$. Then u satisfies

5 17.5

$$\nabla u = 0 \quad \text{in} \quad 0 \leq r < l, -\pi \leq \theta \leq \pi,$$
$$u(1; \theta) = h(\theta) = \begin{cases} 100 & \text{if} \quad 0 < \theta < \pi, \\ 0 & \text{if} \quad -\pi < \theta < 0. \end{cases}$$

(b) Poisson's formula

$$u(r; \theta) = \frac{a^2 - r^2}{2\pi} \int_{-\pi}^{\pi} \frac{h(\varphi)d\varphi}{a^2 - 2ar\cos(\theta - \varphi) + r^2} \qquad (0 \le r \le a, -\pi \le \theta \le r)$$

applied to the problem in part (a) gives

$$\frac{\pi}{u(r;\theta)} = \frac{1-r^2}{2\pi} \int_{0}^{\pi} \frac{100 \, d\varphi}{1-2r\cos(\theta-\varphi)+r^2} \quad \left(0 \le r \le 1, -\pi \le \theta \le \pi\right).$$

(c) We substitute r = 0 in the formula in part (b) (or apply the mean value theorem for harmonic functions) to obtain the steady-state temperature of the material at the center of the disk:

$$u(0; \theta) = \frac{1}{2\pi} \int_{0}^{100} d\varphi = 50$$
.

$$(d) \text{ Let } z = \varphi - \theta \text{ in the formula for u in part(b). Then}$$

$$\pi - \theta$$

$$(*) \quad u(r; \theta) = \frac{1 - r^2}{2\pi} \int \frac{100 \, dz}{1 + r^2 - 2r\cos(z)}$$

$$= \frac{50(1 - r^2)}{\pi} \left(\int_{0}^{\pi} \frac{dz}{1 + r^2 - 2r\cos(z)} - \int_{0}^{\pi} \frac{dz}{1 + r^2 - 2r\cos(z)} \right).$$

Suppose that $0 < \theta < \pi$. Then $0 < \pi - \theta < \pi$ and $-\pi < -\theta < 0$ so by the integration formula on the first page of the exam with $a = 1 + r^2$ and b = -2r, we have $u(r;\theta) = \frac{50(1-r^2)}{\pi} \cdot \frac{2}{\sqrt{(1+r^2)^2 - (2r)^2}} \left[\operatorname{Arctan}\left(\sqrt{\frac{1+r^2+2r}{1+r^2-2r}} \tan\left(\frac{\pi - \theta}{2}\right) - \operatorname{Arctar}\left(\sqrt{\frac{1+r^2+2r}{1+r^2-2r}} \tan\left(-\frac{\theta}{2}\right) \right) \right]$

$$\begin{aligned} & \text{Simplifying yields} \\ & \text{(#**)} \quad u(r;\theta) = \frac{100}{\pi} \bigg[\operatorname{Arclin} \left(\frac{1+r}{1-r} \operatorname{ext}(\theta_{i,s}) \right) + \operatorname{Arclin} \left(\frac{1+r}{1-r} + \operatorname{ant}(\theta_{i,s}) \right) \bigg] \quad \text{if } 0 < \theta < \pi. \end{aligned}$$

$$\begin{aligned} & \text{Suppose } -\pi < \theta < 0. \text{ Then } 0 < -\theta < \pi \text{ and } \pi < \pi - \theta < 2\pi \text{ so} \\ & \text{(#***)} & -\int_{0}^{-\theta} \frac{d\pi}{1+r^{2}-2r\cos(2)} = \frac{2}{1-r^{2}} \operatorname{Arclin} \left(\frac{1+r}{1-r} + \operatorname{ant}(\theta_{i,s}) \right) \\ & \text{as before, and} \\ & \pi^{-\theta} \frac{d\pi}{1+r^{2}-2r\cos(2)} = \int_{0}^{\pi} \frac{A\pi}{1+r^{2}-2r\cos(2)} + \int_{\pi}^{\pi-\theta} \frac{d\pi}{1+r^{2}-2r\cos(\theta)} \\ & = \frac{2}{1-r^{2}} \cdot \frac{\pi}{2} + \int_{0}^{-\theta} \frac{dw}{1+r^{2}+2r\cos(\theta)} \\ & = \frac{2}{1-r^{2}} \cdot \frac{\pi}{2} + \frac{2}{1-r^{2}} \cdot \operatorname{Arclan} \left(\frac{1-r}{1+r} + \operatorname{ant}(\theta_{i,s}) \right) \\ & = \frac{2}{1-r^{2}} \cdot \frac{\pi}{2} + \frac{2}{1-r^{2}} \cdot \operatorname{Arclan} \left(\frac{1-r}{1+r} + \operatorname{ant}(\theta_{i,s}) \right) \\ & = \frac{2}{1-r^{2}} \cdot \frac{\pi}{2} - \frac{2}{1-r^{2}} \operatorname{Arclan} \left(\frac{1-r}{1+r} + \operatorname{ant}(\theta_{i,s}) \right) \\ & \text{Using } (\psi), (\psi + t), \text{ and } (\psi + \psi + w \text{ lave} \\ & \text{Since} \\ \end{aligned}$$

Note: Using the identity
$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \tan(\beta)}$$
, one can show that
the solution to the problem in part (a) of problem **4** is

$$\mathcal{U}(r;\theta) = 50 + \frac{100}{\pi} \operatorname{Arctan}\left(\frac{2r\sin\theta}{1-r^2}\right)$$
.

$$#b$$
We seek the solution of the boundary value problem :() $u_{xx} + u_{yy} + u_{zz} = 0$ if $0 < x < 1, 0 < y < 1, 0 < z < 1,$ (2)-(3) $u(x, 0, z) = 0 = u(x, 1, z)$ if $0 \le x \le 1, 0 \le z \le 1,$ (4)-(5) $u(0, y, z) = 0 = u(1, y, z)$ if $0 \le y \le 1, 0 \le z \le 1,$ (4)-(5) $u(x, y, 0) = 0$ and $u(x, y, 1) = 16xy(1 - x)(1 - y)$ if $0 \le x \le 1, 0 \le y \le 1, 0 \le 1, 0 \le y \le 1, 0 \le y \le 1, 0 \le 1, 0 \le 1, 0 \le y \le 1, 0 \le 1,$

l

We use the method of separation of variables. We seek nontrivial solutions to
the homogeneous part of the problem,
$$\textcircled{O} - \textcircled{O} - \textcircled{O} - \textcircled{O}$$
, of the form
 $u(x_{1}y, z) = X(x)Y(y)Z(z)$. Substituting this expression for u in \textcircled{O} and
simplifying yields $\frac{Z''(z)}{Z(z)} + \frac{Y''(y)}{Y(y)} = -\frac{X''(x)}{X(x)} = constant = \lambda$ and
then $\frac{Z''(z)}{Z(z)} - \lambda = -\frac{Y''(y)}{Y(y)} = constant = \mu$. Substituting $u(x_{1}y,z) = X(x)Y(y)Z(z)$
in $\textcircled{O} - \textcircled{O}$ and using the fact that u is not identically zero produces $X(o) = o = X(i)$.
Similarly $\textcircled{O} - \textcircled{O}$ leads to $Y(o) = o = Y(i)$ and \textcircled{O} leads to $Z(o) = o$. Therefore
we are led to the system
 $\begin{cases} X''(x) + \lambda X(x) = o & \text{if } o < x < i , X(o) = o = X(i), \\ Z''(z) - (\lambda + \mu)Z(z) = o & \text{if } o < z < i , Z(o) = o. \end{cases}$
The solutions to X and Y eigenvalue problems with Dirichlet boundary conditions are,
respectively,

$$\lambda_{l} = (l\pi)^{2}, \ \overline{X}_{l}(x) = \sin(l\pi x) \quad (l = 1, 2, 3, ...)$$

$$\mu_{m} = (m\pi)^{2}, \ \overline{Y}_{m}(y) = \sin(m\pi y) \quad (m = 1, 2, 3, ...).$$

The solution, up to a constant multiple, of the corresponding Z-problem when $\lambda = \lambda_{k}$ and $\mu = \mu_{m}$ is $Z_{l,m}(z) = \sinh(\pi z \sqrt{l^{2} + m^{2}}) (l = 1, 2, 3, ...; m = 1, 2, 3, ...$ By superposition, a formal solution to (1 - (2 - 3) - (-5) - (-5)) is $u(x, y, z) = \sum_{l=1}^{\infty} \sum_{m=1}^{\infty} C_{l,m} \sin(l\pi x) \sin(m\pi y) \sinh(\pi z \sqrt{l^{2} + m^{2}})$ l = 1, m = 1

where the cen are arbitrary constants. To satisfy @ we must have

$$4x(1-x)4y(1-y) = u(x_1y_1 1) = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} b_{k,m} \sin(k\pi x) \sin(m\pi y)$$

for all $0 \le x \le 1$ and $0 \le y \le 1$; here $b_{k,m} = c_{k,m} \sinh(\pi \sqrt{l^2 + m^2})$ for $l=1,2,3,...$
and $m=1,2,3,...$. But the $b_{k,m}$ must be the fourier coefficients of the
function $g(x_1y) = 4x(1-x)4y(1-y)$ on the unit square $0 \le x \le 1$, $0 \le y \le 1$,
with respect to the orthogonal set

$$P_{l,m}(x,y) = sin(l\pi x)sin(m\pi y)$$
 $(l=1,2,3,...; m=1,2,3,...)$

on the unit square. That is,

$$b_{l,m} = \frac{\langle g, \varphi_{l,m} \rangle}{\langle \varphi_{l,m} \rangle, \varphi_{l,m} \rangle} = \frac{\int_{0}^{1} \int_{0}^{1} 4x(1-x)4y(1-y)\sin(l\pi x)\sin(m\pi y)dxdy}{\int_{0}^{1} 5in^{2}(l\pi x)sin^{2}(m\pi y)dxdy}$$

$$= \left(\frac{\int_{0}^{1} 4x(1-x)\sin(l\pi x)dx}{\int_{0}^{1} sin^{2}(l\pi x)dx}\right) \cdot \left(\frac{\int_{0}^{1} 4y(1-y)\sin(m\pi y)dy}{\int_{0}^{1} sin^{2}(m\pi y)dy}\right)$$

$$= \left(2\int_{0}^{1} 4x(1-x)\sin(l\pi x)dx\right) \cdot \left(2\int_{0}^{1} 4y(1-y)\sin(m\pi y)dy\right).$$

By problem 5 we have

$$2\int_{0}^{1} 4x(1-x)\sin(l\pi x)dx = \begin{cases} 0 & \text{if } l=2j \text{ is even,} \\ \frac{32}{\pi^{3}(2j-1)^{3}} & \text{if } l=2j-1 \text{ is odd,} \end{cases}$$

$$2\int_{0}^{1} 4y(1-y)\sin(m\pi y)dy = \begin{cases} 0 & \text{if } m=2k \text{ is even,} \\ \frac{3z}{\pi^{3}(2k-1)^{3}} & \text{if } m=2k-1 \text{ is odd.} \end{cases}$$

Therefore

$$b_{2j-1,2k-1} = \frac{(32)}{\pi^{6}(2j-1)^{3}(2k-1)^{3}} \quad (j=1,2,3,...) \text{ and all}$$
other $b_{1,m}$ are zero. Consequently
$$c_{2j-1,2k-1} = \frac{(32)^{2}}{\pi^{6}(2j-1)^{3}(2k-1)^{3}\sinh(\pi\sqrt{(2j-1)^{2}+(2k-1)^{2}})} \quad (j=1,2,3,...and k=1,2,3,...)$$

and all other c, are zero. Thus a solution to O-O-O-O-O-O is

$$u(x_{i}y_{j}z) = \frac{1024}{\pi^{6}} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{\sin((2j-1)\pi x)\sin((2k-1)\pi y)\sinh(\pi z \sqrt{(2j-1)^{2}+(2k-1)^{2}})}{(2j-1)^{3}(2k-1)^{3}\sinh(\pi \sqrt{(2j-1)^{2}+(2k-1)^{2}})}$$

standard deviation: 37.1

0	Graduate	Undergraduate	~
nange	Lefter Grade	Letter brade	Frequency
174 - 200	A	A	6
146 - 173	B	В	8
120 - 145	С	В	10
100 - 119	C	С	3
0 - 99	F	\mathcal{D}	9