Sec i.3  Flows, Vibvadions , and Difusions

Derivation of the One-Dimensional Wave Equation

Problem: An elastic string is stretched to a length L and fixed at its endpoints. If the string is distorted
and then released at time 7 =0, find an equation governing the transverse displacement u = u(x,f) of the

string at (horizontal) position x and time ¢.

Solution: Reality is infinitely more complex than any mathematical model can describe. Consequently,
we will make the following modeling assumptions so as to distill out the “essential” features of the

problem. (Fova meve detailed {veat meuk o the uakion doverning vibratory wotion o an elastic
shr:e\&, see 4o veformnces of the end of this k. )
1. The string is so thin that its cross $ections move as single points.
2. The string will be represented as a continuum with linear mass density p(x) at position x.
3. The string performs only small transverse vibrations in a vertical plane.
4. The string is perfectly flexible; i.e. tensile forces are transmitted tangentially at all points
along the string. ‘ \ '
5. The dissipative forces retarding the string’s motion are small and may be safely neglected.
6. The tensions exerted at the endpoints of the string, to hold it motionless there, are the only
external forces acting on the string.

Fix a time 7 >0 and a horizontal position x between 0 and L. Consider the segment of string
between x and x+ Ax. By assumption 4, the tensions T, and T, that act on the endpoints of this
segment are tangential to the segment there. (See the diagram below.)
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Let @ and S, respectively, denote the angles that T, and T, make with respect to horizontal. Then

tan(e) = slope of tangent line to string at x (for fixed #)
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Applying Newton’s second law of motion, F = ma, to the segment of string between x and x+ Ax, and
resolving this vector equation into horizontal and vertical components yields
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Substituting (6), (2), and (3) into (5) produces i
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Now, taking the limit in (8) as Ax — 0 and using the continuity of the integrand in the right member
gives
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or equivalently,

(10) u @;t) - lT(?‘, ’“x"t)‘“- (xtY =

P(x) i+ Uy (=)

For small vibrations, # and its derivatives are very much less than 1. Consequently, NI+ ul(x,t) is

o .

approximately 1, and it follows from (2), (3), and (4) that [T(x,u,ul,,t)[ is approximately constant, say
T,. Thus for small vibrations, (10) is approximately
T s Ly —
(11) W, ) ~ w (%) = o .
" P
When the string is homogeneous, i.e. when p(x) = constant = p, forall x between 0 and L, (11)
reduces to

(12) w,, — CuUu = O

where ¢ = /T, /p,. Equation (12) is known as the one-dimensional (undamped) wave equation.

1. A First Course in Partial Differential Equations by Hans Weinberger, Wiley, 1965, pp. 1-5.
2. S. Antman, The Equations for Large Vibrations of Strings, American Mathematical Monthly 87
(May 1980), pp. 359-370.
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Derivation of the Heat (or Diffusidn) Equation

Problem: A solid body occupies aregion R inspace. If R contains no sources or sinks of heat, find
an equation governing the temperature u(x, y, z,1) of the body at position (x, y,z) in R and time #> 0.

Solution: It is an empirical physical “law” that heat energy flows in a solid body in the direction of
decreasing temperature, and evidence shows that the rate of heat flow (per unit time) is approximately
proportional to the magnitude of the temperature gradient. Thus the velocity of heat flow in R is

(1) v=-RVu

where k = k(x,y,z) is the thermal conductivity of the material at position (x,y,z) in R.

Let C be any cube contained in R. The heat leaving C per unit time 1s
@ - U vndd
dt
2oC

where v-n is the component of v in the direction of the outward-pointing unit normal n to the
boundary 8C of C, and dS denotes the element of surface area on oC. From (1) and the divergence

theorem (Appendix A.3, p. 393) we obtain )

3) 55 GrdS = SSS 7. T4V ¢ _SH v (kv )dY,
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~ On the other hand, the total amount of heat in C at time £ is
) H(r) = SSS E(xy2,ulxu2,0)dY

where E(x,y,z,u) denotes the energy density (i.e. energy per unit volume) at position {x, y,z) and
temperature ». Hence the time rate of change of # in Cis
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and this must be equal to the amount of heat leaving C. From (3} and (5) we thus have
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or equivalently,
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Since this relation holds for every cube C contained in R and the integrand is assumed to be
continuous in R, the second vanishing theorem (Appendix A.1, p. 386) implies that the integrand must

be zero everywhere. That is,

(8) %—E;L%";—-V«’Usz) = o o R

If the material in R is homogeneous, then its thermal conductivity is constant:
(9) k(x, Vs Z) = COYLS{(,!.V\'L = ho

Furthermore, for moderate temperature ranges and most commonly occurring materials, the rate of
change of energy density with temperature is nearly constant:

(10) %‘Ziz Consheat = T

where o denotes the specific heat (i.e. rate of change of heat energy per unit mass per unit temperature)
and o denotes the mass density (i.e. mass per unit volume). Substituting from (9) and (10) into (8)

yields the classical three-dimensional heat (or diffusion) equation

(11) «, = CYw = O

where ¢ = [—%.
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