Mathematics 325

Supplementary Lecture Notes for Section 5.3 Orthogonality and General Fourier Series

<u>Definition</u>. For $n \ge 1$, let $C^n[a,b]$ denote the vector space of n times continuously differentiable complex-valued functions on the interval [a,b]. Let C[a,b] denote the vector space of continuous complex-valued functions on [a,b], and let V be a vector subspace of C[a,b]. A function T, defined on V, taking values in C[a,b], and with the property that

$$T(c_1f_1 + c_2f_2) = c_1T(f_1) + c_2T(f_2)$$

for all numbers c_1 and c_2 and all f_1 and f_2 in V, is called a *linear operator* on V.

Example 1. The differential operator $T = -\frac{d^2}{dx^2}$ is a linear operator on $C^2[a,b]$.

<u>Definition</u>. A linear operator $T: V \to C[a,b]$ is called *symmetric* if $\langle Tf, g \rangle = \langle f, Tg \rangle$ for all f and g in V.

<u>Homework A</u>. Show that $T = -\frac{d^2}{dx^2}$ is symmetric on the following subspaces of $C[0, \pi]$.

- 1. $V_N = \{ f \in C^2[0,\pi] : f'(0) = 0 = f'(\pi) \}.$
- 2. $V_P = \{ f \in C^2[-\pi, \pi] : f(-\pi) = f(\pi), f'(-\pi) = f'(\pi) \}.$
- 3. $V_R = \left\{ f \in C^2[0,\pi] : f'(0) a_0 f(0) = 0 = f'(\pi) + a_\pi f(\pi) \right\}.$ (Here a_0 and a_π are fixed real constants.)

Example 3. Show that the operator $Tf(x) = (1-x^2)f''(x) - xf'(x)$ is symmetric on the vector space $V_T = \{f \in C^2(-1,1): f \text{ and } f' \text{ are bounded on } (-1,1)\}$ equipped with the inner product

(*)
$$\langle f,g\rangle = \int_{-1}^{1} f(x)\overline{g(x)} (1-x^2)^{-1/2} dx.$$
 Solution: Let f and g belong to ∇_T . Then $\langle Tf,g\rangle = \int_{-1}^{1} ((1-x^2)f''(x)-xf(x))\overline{g(x)} (1-x^2)dx$

Solution (cont.):
$$\langle Tf, g \rangle = \int_{-1}^{1} \left[(1-x^2)^{\frac{1}{2}} f'(x) - x(1-x^2)^{\frac{1}{2}} f'(x) \right] \overline{g(x)} \, dx = \int_{-1}^{1} \overline{g(x)} \frac{d}{dx} \left[(1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)} \right] = 0 \quad \text{and} \quad \\ = (1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)} - \int_{-1}^{1} (1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)} \, dx \quad \text{Since lim } (1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)} = 0 \quad \text{and} \quad \\ \lim_{x \to -1^{-}} \lim_{x \to -1^{+}} \frac{(1-x^2)^{\frac{1}{2}} f'(x) \overline{g(x)}}{\lim_{x \to -1^{+}} \frac{dy}{(x-1)^{\frac{1}{2}} f'(x)}{\lim_{x \to -1^{+}} \frac{dy}{(x-1)^{\frac{1}{2}} f'(x)}{\lim_{x$$

<u>Definition</u>. Let $T:V \to C[a,b]$ be a linear operator. If λ is a complex number and $f \neq 0$ is a function in V such that $Tf = \lambda f$ then λ is called an *eigenvalue* of T and f is called an *eigenfunction* of T.

Example 4. The operator $T = -\frac{d^2}{dx^2}$ on $V_D = \left\{ f \in C^2[0,\pi] : f(0) = 0 = f(\pi) \right\}$ has eigenvalues $\lambda_n = n^2 \ (n = 1, 2, 3, ...)$ and corresponding eigenfunctions $f_n(x) = \sin(nx) \ (n = 1, 2, 3, ...)$.

Theorem 2. Let $T: V \to C[a,b]$ be a symmetric operator. Then all the eigenvalues of T are real numbers.

Note: The proof of Theorem 2 will make use of the following properties of an inner product.

- (1) For all f in V, $\langle f, f \rangle \ge 0$, with equality only if f = 0.
- (2) For all f, g, and h in V, $\langle f+g,h\rangle = \langle f,h\rangle + \langle g,h\rangle$.
- (3) For all f and g in V and all complex numbers α , $\langle \alpha f, g \rangle = \alpha \langle f, g \rangle$.
- (4) For all f and g in V, $\langle f, g \rangle = \overline{\langle g, f \rangle}$.

It is an easy consequence of (3) and (4) that $\langle f, \alpha g \rangle = \overline{\alpha} \langle f, g \rangle$.

Proof of Theorem 2: Let λ be an eigenvalue of T and let f be a nonzevo function in V

Proof of Theorem 2 (cont.): such that $Tf = \lambda f$. Then $\lambda \langle f, f \rangle \stackrel{!}{=} \langle \lambda f, f \rangle = \frac{1}{2} \langle \lambda f, f \rangle = \frac{1}$

Theorem 1. Let $T:V\to C[a,b]$ be a symmetric operator. If f_1 and f_2 are eigenfunctions of T corresponding to distinct eigenvalues λ_1 and λ_2 of T, then f_1 and f_2 are orthogonal on [a,b].

Proof: Let λ_1 and λ_2 be distinct eigenvalues of T on V. That is, $\lambda_1 \neq \lambda_2$ and there exist nonzero functions f_1 and f_2 in V such that $Tf_1 = \lambda_1 f_1$ and $Tf_2 = \lambda_2 f_2$. Thus symmetry of T $\lambda_1 \langle f_1, f_2 \rangle = \langle \lambda_1 f_1, f_2 \rangle = \langle Tf_1, f_2 \rangle \stackrel{!}{=} \langle f_1, Tf_2 \rangle = \langle f_1, \lambda_2 f_2 \rangle = \overline{\lambda_2} \langle f_1, f_2 \rangle$ $= \lambda_2 \langle f_1, f_2 \rangle \text{ by Theorem 2. Therefore } (\lambda_1 - \lambda_2) \langle f_1, f_2 \rangle = \lambda_1 \langle f_1, f_2 \rangle - \lambda_2 \langle f_1, f_2 \rangle = 0.$ But $\lambda_1 - \lambda_2 \neq 0$ so $\langle f_1, f_2 \rangle = 0$. That is, f_1 and f_2 are orthogonal on [a,b]

Example 5. Let $Tf(x) = (1-x^2) f''(x) - xf'(x)$ be the operator on the vector space $V_T = \left\{ f \in C^2(-1,1) : f \text{ and } f' \text{ are bounded on } (-1,1) \right\}$ equipped with the inner product (*) $\left\langle f,g \right\rangle = \int_{-1}^{1} f(x) \overline{g(x)} \left(1-x^2\right)^{-1/2} dx.$

Show that all the eigenvalues of T are real numbers and the eigenfunctions of T corresponding to distinct eigenvalues are orthogonal on the interval (-1,1) relative to the inner product (*).

Solution: Example 3 shows that the operator T is symmetric on V_T , equipped with the inner product (*). According to Theorem 2, all the eigenvalues of T are real numbers. By Theorem 1, eigenfunctions of T corresponding to distinct eigenvalues are orthogonal on (-1,1) relative to the inner product (*).

Note: It can be shown that the symmetric operator T in Example 5 has eigenvalues $\lambda_n = -n^2$ (n = 0, 1, 2, ...) and corresponding eigenfunctions that are the Tchebicheff polynomials: $f_n(x) = \cos\left(n\cos^{-1}(x)\right) \quad (n = 0, 1, 2, ...)$. The first three Tchebicheff polynomials are $f_0(x) = 1$, $f_1(x) = x$, and $f_2(x) = 2x^2 - 1$. The Tchebicheff polynomials are solutions to Tchebicheff's differential equation $\left(1 - x^2\right) f''(x) - x f'(x) = \lambda f(x)$ on the interval $\left(-1, 1\right)$ with $\lambda = \lambda_n = -n^2$.

Note on #1 of "Additional Problems for Section 5.3": Consider the operator

$$Tf(r) = \frac{1}{r} \frac{d}{dr} (rf'(r)) - \frac{n^2}{r^2} f(r) \qquad (0 < r \le 1)$$

on the domain

$$V_B = \{ f \in C^2(0,1] : f(1) = 0 \text{ and } f, f' \text{ are bounded on } (0,1] \}.$$

The inner product

$$\langle f, g \rangle = \int_{0}^{1} f(r) \overline{g(r)} r dr$$

on V_R arises naturally from the inner product

$$\langle h, k \rangle = \int_{0}^{2\pi} \int_{0}^{1} h(r, \theta) \overline{k(r, \theta)} r dr d\theta$$

for square-integrable functions h and k in the unit disk $D = \{(r, \theta): 0 \le r \le 1, 0 \le \theta \le 2\pi\}$ of the plane. The eigenvalue equation $Tf = \lambda f$ for this operator is equivalent to Bessel's equation of order n (cf. pp. 252 and 268 in Strauss):

$$\frac{1}{r}\frac{d}{dr}(rf'(r)) - \frac{n^2}{r^2}f(r) = \lambda f(r).$$

For applications of #1 in solving PDEs see Strauss, Section 10.2: Vibrations of a (Circular) Drumhead.

Theorem 3. Let $T = -\frac{d^2}{dx^2}$ be symmetric on a vector subspace V of $C^2[a,b]$ which is closed under the operation of complex conjugation of functions. If $f(b)f'(b) - f(a)f'(a) \le 0$ for all real-valued functions f in V then T has no negative eigenvalues.

Proof: Let λ be an eigenvalue of T on V and let f be an eigenfunction of T on V corresponding to λ ; that is, f is a nonzero function in V such that $Tf = \lambda f$. This last condition is equivalent to $f''(x) + \lambda f(x) = 0$ for all x in [a,b].

Take the complex conjugate of this identity, and use the fact that λ is a real number (cf. Theorem 2) to obtain $\overline{f''(x)} + \lambda \overline{f(x)} = 0$ for all x in [a,b]. Thus $T\overline{f} = \lambda \overline{f}$, so \overline{f} is an eigenfunction of T on V corresponding to λ . Consequently, at least one of the functions

$$\phi = \operatorname{Re}(f) = \frac{1}{2} (f + \overline{f})$$
 or $\psi = \operatorname{Im}(f) = \frac{1}{2i} (f - \overline{f})$

is not the zero function and hence is a real-valued eigenfunction of T on V corresponding to λ . Suppose for the sake of argument that $\phi \neq 0$. Observe that

suppose for the stake of argument that
$$\phi$$
 is a section of the stake of argument that ϕ is a suppose for the stake of ϕ is a suppose for the stake of ϕ is a suppose for the stake of ϕ is a suppose for the stake of

Since the last member of this identity is nonnegative and $\langle \phi, \phi \rangle$ is positive, it follows that $\lambda \ge 0$. Q.E.D.

Example 7. All the eigenvalues of
$$T = -\frac{d^2}{dx^2}$$
 on $V_D = \{ f \in C^2[0,\pi] : f(0) = 0 = f(\pi) \}$ satisfy $\lambda \ge 0$.

Note: You will need to generalize Theorem 3 and its proof in order to work #1(c) on "Additional Problems for Section 5.3".

Math 325 Section 5.3 Supplementary Problems

1. (a) Let n be a nonnegative integer. Show that the operator T given by

$$Tf\left(r\right) = \frac{1}{r} \frac{d}{dr} \left(r \frac{df}{dr}\right) - \frac{n^2}{r^2} f\left(r\right) \qquad \left(0 < r \le 1\right)$$

is symmetric on the vector space

$$V_B = \{ f \in C^2(0,1] : f(1) = 0, f \text{ and } f' \text{ bounded on } (0,1] \}$$

equipped with the inner product

(*)
$$\langle f, g \rangle = \int_{0}^{1} f(r) \overline{g(r)} r dr.$$

- (b) Show that the eigenvalues of T on V_B real numbers.
- (c) Are the eigenvalues of T on V_B positive? Justify your answer.
- (d) Are the eigenfunctions of T on V_B , corresponding to distinct eigenvalues, orthogonal on (0,1) relative to the inner product (*)? Justify your answer.
- 2. Use separation of variables to solve the variable density vibrating string problem:

$$\frac{1}{(1+x)^2} u_{tt} - u_{xx} = 0 \quad \text{for } 0 < x < 1, \ 0 < t < \infty,$$

$$u(0,t) = 0 \quad \text{and} \quad u(1,t) = 0 \quad \text{for } 0 \le t < \infty,$$

$$u(x,0) = x(1-x)\sqrt{1+x} \quad \text{and} \quad u_t(x,0) = 0 \quad \text{for } 0 \le x \le 1.$$

Hints on 2: (a) Show that the operator T given by $Tf(x) = -(1+x)^2 f''(x)$ is symmetric on $V_D = \{ f \in C^2[0,1] : f(0) = 0 = f(1) \}$, equipped with the inner product $\langle f,g \rangle = \int_0^1 f(x) \overline{g(x)} (1+x)^{-2} dx$.

Conclude that all the eigenvalues λ of the problem $X''(x) + \frac{\lambda}{(1+x)^2} X(x) = 0$, X(0) = 0 = X(1) are real.

(b) Show that (nearly) all solutions to $X''(x) + \frac{\lambda}{(1+x)^2}X(x) = 0$ on (0,1) are of the form $X(x) = (1+x)^a$

where a is an appropriately chosen (possibly complex) constant. Explicitly, show that the general solution is:

$$X(x) = (1+x)^{1/2} \left[c_1 (1+x)^{\frac{\sqrt{1-4\lambda}}{2}} + c_2 (1+x)^{\frac{-\sqrt{1-4\lambda}}{2}} \right] \text{ if } 1-4\lambda > 0,$$

$$X(x) = (1+x)^{1/2} \left[c_1 + c_2 \ln(1+x) \right] \text{ if } 1-4\lambda = 0,$$

$$X(x) = (1+x)^{1/2} \left[c_1 \cos\left(\frac{\sqrt{4\lambda-1}}{2}\ln(1+x)\right) + c_2 \sin\left(\frac{\sqrt{4\lambda-1}}{2}\ln(1+x)\right) \right] \text{ if } 1-4\lambda < 0.$$