Mathematics 325
Supplementary Lecture Notes for Section 5.3
Orthogonality and General Fourier Series

Definition. For n2>1, let C"[a,b] denote the vector space of n times continuously differentiable
complex-valued functions on the interval {a,b]. Let C[a,8] denote the vector space of continuous
complex-valued functions on [a,b], and let V' be a vector subspace of C[a,b]. A function T, defined
on V, taking values in Cla,b], and with the property that

T(of +ofy)=al (f)+aT(f)

for all numbers ¢, and ¢, and all £ and f, in ¥, is called a linear operator on V.
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Example 1. The differential operator 7 = —5:2 is a linear operator on C*[a,b].

Definition. A linear operator T':V — Cla,b] is called symmetric if (Tf,g) = (/> Tg) forall f and g in
V.
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Example 2. Show that the operator 7 = _?jx_ is symmetric on ¥, = { feC0x]: f(O)=0=f (n’)}.
Solution: | ot £ amd ;) [ae[ovt% to V. Then hwo m%eardbms bj \7”"75 and use of the
bomdaxj conditions F@) =0 = fr) and ‘3(.01-' o = 9&F) show that 7

<T‘f,3> j T‘Y‘(ﬁ)ﬁb‘)clx -j ‘F(x)ao‘)olx [ 5'-(#)90‘)4— ‘?(%)30‘)“ —5 ‘Fbe)ta(f)olx-
..-j ‘S:(i‘)[v %”(?‘714.7(- . Thevefore <T‘f' 9> <'F/-r3> So T is s:,mmd;v\c, on'\f» .
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Homework A. Show that ' = —%5— is symmetric on the following subspaces of C[0,x].
={feC’[0,x]: f(0)=0= f(m}.
={f eC?[-m.x): f(-m) = f(m), f(=m)= [ (m)}.
={f C[0.7]: £'(0)=a,/ (0)=0= f'()+a,f(m)}.

(Here a, and a_ are fixed real constants.)

Example 3. Show that the operator 7f(x) = (1 —x’ ) F"(x)—xf'(x) is symmetric on the vector space
= { feC*-1L1): f and f" are bounded on (-1, 1)} equipped with the inner product

*) (f, g) = j- f(x)ﬁ(l —x? )_W dx. ‘ -
Solution: | gt £ and q b,,\ma to 'V_‘_ . Thew {T¥ ; 3) = 5 m ..,J)_F!rw _ )"Y?")].ﬁ-;; (l- x"):\x
-1



xV

Solution (cont.): Y, 1 l__H:A - ‘v_‘ ,

<T"f 37 j,l{u'ﬂf (*y- x(4- 1)'?0‘)] fa(x)a\x ] ﬁgq Ei@-,‘)f oq}\x
‘ b == bt e

TR A @) Ggatadx . Since fim (- Vg = © and
B U * )‘FOC)S( ’ \ ( " ) )‘a xr " bouwnded,

==

xm U_xt)t/z'_gf%) a(f:) = 0 LJ Jhe 51}\8&%6 ‘“\urem it fol[om& Hhal L'x) ‘F("'ﬁ@‘)\

s bounded U e L
1 /-v*"—"\ e
fardore. <T)a = —S ! -x)gM dn = - (-7) ‘3@"7‘0‘)\ j ‘EM*{L«) gealdx .

K"’-—\

Dt an M‘jume»d: similar to the one above shows 4hat Q-x) tﬁ@«)‘?b‘)\ =0 So

—-'

‘<T§';3> 5 1%.‘)[ ‘x) ‘30‘1 - "U"‘)ﬁc’"]i"' = S ’c@){(“*l)g"w-xaffz‘JlQ—x':)%lx
%

and. hence <TF 97 = {51797 . Comequently T is symmebric on V.

Definition. Let T:¥ — C[a,b] be a linear operator. If 1 isa complex number and f # 0 is a function
in V suchthat Tf = Af then A is called an eigenvalue of T and f is called an eigenfunction of T.
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Example 4. The operator 7' = —% on vV, = { feC0,x]: f(OY=0=f (n)} has eigenvalues
A, =n’ (n=1,2,3,...) and cotresponding eigenfunctions f,(x)=sin(x) (n=12,3,..).

Theorem 2. Let T:¥ — C[a,b] be a symmetric operator. Then all the eigenvalues of T are real
numbers.

Note: The proof of Theorem 2 will make use of the following properties of an inner product.
(1) Forall f in ¥, {f,f)=0, with equality only if f=0.
(2) Forall 7, g, andhin¥, (f+g.h) ={f.h)+{g.h).
(3) Forall f and g in ¥ and all complex numbers e, {af.g)=a(f.g).
(4) Forall fandgin ¥, {f.g)={g.f).
It is an easy consequence of (3) and (4) that (f,cg) = a(f.g).

Proof of Theorem 2: Let >s Le, an e.lseuulwe. uF T and let -F be a. nenzevo 'S:u.ﬂtﬂon ';,v\'V'



(3)

Proof of Theorem 2 (cont) such Hat T =AF, Then A<§' 5= <>"F o =
S\,mneh'j & T (3)‘\@']

CTEES & 25T5Y = <H,MD L NLEF). Consopently
(A-DKEEY = MEE7- NS EYy =0 - Bk f0 0 FHFy PO by ).
Hence A-N= O o eawwm\en{:l:j A= X . That i is \ is a veal number,

Theorem 1. Let T:¥ — C[a,b] be a symmetric operator. If f; and £, are eigenfunctions of T
corresponding to distinct eigenvalues 4, and A, of T, then f, and f, are orthogonal on [a,b].

Proof: l.eb /\ and A be distinct Ct&%ﬂ\'ﬂlws of TonV. Thatis, A # X, and there
exist nowzevo -yu.m{mns -F and F in 'V'smk-kh.d: Tf )'{: and ‘\'.S: >~‘F Thus

nd'.\f,
< ‘F,,‘F;,) <’\ 'f-l )‘FL> <T'Fl) -.v.> <'Ft )T'F > <'Y'l/ z 1-> -:.<§U'Ft->
= NK5 5.y by Teoem 2. Thenoe (O, -0)<E ) = AKERY - ARy =0,
But }\l ->~:_ 40 so <'F.)‘F,_>= 0. That is, ‘Flam\-ft ave er-ihnaam| om [a,b]

Example 5. Let 7f (x) = (1 —x° ) £"(x)—xf'(x) be the operator on the vector space

= { FeC*-L1): f and /' are bounded on (—1,1)} equipped with the inner product

*) (f.8)= [ @@ (1-5) " dx

Show that all the eigenvalues of 7 are real numbers and the eigenfunctions of T corresponding to
distinct eigenvalues are orthogonal on the interval (—1,1) relative to the inner product (*).

Solution: Exam‘)\e, 3 dhows thal the oYo.m:\or T is sjmmdxtc on -V_}., e‘lf""l’fe‘d with
e intev ?\foo\wk (%) . Aocofdm% Yo Theovem 2,all the hse.mlajues of T ore real

numbers . B Y Theovem 1, cxben-?mo%ns of T cofres?om\ms 4o distinck e.tsg\ﬂvalugs ave
w{'hosona.l on (—t J I) fe‘d:i\le, -l'o '“n.e wney ?Yulu‘b &) .

Note: It can be shown that the symmetric operator 7' in Example 5 has eigenvalues 4, =—n’
(n=0,1,2,...) and corresponding eigenfunctions that are the Tchebicheff polynomials:

f.(x)=cos (n cos”(x)) (n=0,1,2,..). The first three Tchebicheff polynomials are folxy=1,
fi(x)=x, and f,(x)= 2x% —1. The Tchebicheff polynomials are solutions to Tchebicheff’s differential
equation (1—x7)/"(x)—%"(x) = 1/(x) on the interval (-1,1) with A =2, =—n".



Note on #1 of “Additional Problems for Section 5.3”: Consider the operator

T =27 0) -2 /) @<rsD

2
¥

on the domain
v, ={feC*©.1]: f(1)=0andf, /" are bounded on (0.1]}.

The inner product
(f.2)=] F(r)g(ryrdr

on ¥, arises naturally from the inner product
Iz 1

(k)= | f h(r,0)k(r,O)rdrd0

for square-integrable functions # and & in the unit disk D = {(r.0): 0sr<1, 0<0< 2z} of the plane.
The eigenvalue equation Tf = A for this operator is equivalent to Bessel’s equation of order # (cf. pp.
252 and 268 in Strauss):

1d, . n*

——(tf' (")~ () =AS().

rdr ¥
For applications of #1 in solving PDEs see Strauss, Section 10.2: Vibrations of a (Circular) Drumhead.

2 .
Theorem 3. Let T = i be symmetric on a vector subspace V' of C ?[a,b] which is closed under the

operation of complex conjugation of functions. If f(b)f "(B)— f(a)f'(a) <0 for all real-valued
functions f in ¥ then 7 has no negative eigenvalues.

Proof: Let A be an eigenvalue of T on ¥ and let f be an eigenfunctionof 7 on ¥’ corresponding to

A; thatis, f is a nonzero function in ¥ such that Tf = 4 /. This last condition is equivalent to
F'(x)+Af(x)=0 forallxin[a,b].

Take the complex conjugate of this identity, and use the fact that A isa real number (cf, Theorem 2) to

obtain _fmﬁ@+/lm =0 forallx in[a,b]. Thus T ? = Az SO ? is an eigenfunction of 7 on V'

corresponding to A. Consequently, at least one of the functions

p=Re(/)=3(F+7) or w=Im(N=7(77)

is not the zero function and hence is a real-valued eigenfunction of T on ¥ corresponding to 4.
Suppose for the sake of argument that ¢ = 0. Observe that

M.8) = (1,0) = (T6,8) = [~4" ()G = [ 4" (x)p(x)ds =4 B)p(B) + ¢ (@p(a)+ [(#' ()]
Since the last member of this identity is nonnegative and (g,4) is positive, it follows that 4>0. Q.E.D.

2

Example 7. All the eigenvalues of T’ = —%2— on ¥V, = {f e C*0,7]: f(1)=0= f(fc)} satisfy 4 2=0.

Note: You will need to generalize Theorem 3 and its proof in order to work #1(c) on “Additional
Problems for Section 5.3”.



Math 325
Section 5.3 Supplementary Problems

1. (a) Let nbe a nonnegative integer. Show that the operator 7' given by

If (r) =%g;[r%}—:—2f(r) (0<r<l)

is symmetric on the vector space
v, ={feC*(0,1]: £(1)=0, f and /' bounded on (0,1]}
equipped with the inner product
1
(*) (f,g) = If(r)g(r)rdr.
0
(b) Show that the eigenvalues of 7' on ¥, real numbers.
(c) Are the eigenvalues of T on ¥}, positive? Justify your answer.

(d) Are the eigenfunctions of 7' on ¥, corresponding to distinct eigenvalues, orthogonal on (0,1) relative

to the inner product (*)? Justify your answer.

2. Use separation of variables to sblve the variable density vibrating string problem:
' 1

(1+x)
u(0,£)=0 and u(1,1)=0 for 0=t <eo,
u(x,0)=x(1-x)v1+x and # (x0)=0 for 0<x<].

u,=0 for 0<x<], O<r<om,

Hints on 2: (a) Show that the operator T given by Tf (x)=—(1+ x)2 f"(x) is symmetric on

Vv, = {f eC?[0,1]: F(0)=0= f(l)} , equipped with the inner product (f,g) = jf(x):gm(l+x)_2 dx.

Conclude that all the eigenvalues A of the problem X" (x)+ a A )2 X (x)=0, X(0)=0=Xx(1) are real.
+x

0 +ﬂx —X(x)=0 on (0,1 are of the form X (x)=(1+ x)’
where @ is an appropriately chosen (possibly complex) constant. Explicitly, show that the general solution is:

/2 S-41 —fi-dd
X(x)=(1+x)"|q(l+x) 2 +¢(1+x) 2 | if 1-42>0,

(b) Show that (nearly) all solutions to X"(x)+

X(x)=(142)"[c +¢,In(1+x)] if 1-42=0,

"2 clcos( 4;—1h1(1+x)]+c2sin[

V4l -1
2

X(x):(l#—x)

1n(1+x)ﬂ if 1-44<0.



