Mathematics 325 .
Lecture Notes for Section 6.1 (_ -ectere)
Laplace’s Equation

Laplace’s equationis V'u=0. In paﬂicxﬂar,% °
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One dimension: —Zx—? =0 with solution #(x)=ax+b where a and b are arbifrary constants;

Two dimensions: gx—u + Z; =0 with solutions being much more complex. Some examples are:
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Homework A. Find all solutions of the form

u(x,y)=ax’ +bxy+cy’ +dc+ey+ f  (a,b,..., f constants)
to the two-dimensional Laplace equation.
(&-) Seln: wpgy) = afx- g+ Lx:j + A + eyt §
The it 1nh0m0geneous Laplace equation is called Poisson’s equatzon Viu=f.

: Deﬁnition. If u is a solution to Laplace’s equation V?u =0 in aregion D, then u is called a harmonic
Junctionin D.

Applications of the Laplace/Poisson Equation.
1. Stationary (or Steady-State) Diffusions and Waves.

I u =u(x,t) is a solution to the wave equation u, —c¢’V’u =0 and u is independent of ¢ then
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0=u,=u,, so u solves Laplace’s equation V’4 =0. Such a solution u is called a “standing wave”.
(Similar statements hold for time-independent solutions of the diffusion equation u -kViu=0.)

2. Conservative Field Theory (e.g. electrostatics, irrotational hydrostatics, gravitation).

A field F is conservative in aregion D of R’ if there exists a C" real-valued function ¢ such that
F=-Vg. Insuch acase, the function ¢ is called a pofential for F in D, and if F is divergence-free
then .

0=VF=Ve(-Vg)=-V’¢ in D.
That is, the potential ¢ is harmomc in D. Laplace exploited this idea to systematically solve problems
in celestial mechanics.



3. Analytic Function Theory.

Definition. A complex-valued function f is analytic in aregion D of the complex plane provided
f has a power series representation
f@)=3 a,(z-z)
n=0

in some nonempty open disk |z~ z,| < about each point z, in D.

FACT (cf. exercise 1 in Section 6.1). The function f is analytic in a region D if and only if

fx+y)=ulx,y)+iv(x,y) (x+iy=z in D)
for some harmonic real-valued functions « and v in D which satisfy the Cauchy-Riemann equations
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Note:rAs a consequence of FACT, any solution to Laplace’s equation V’u =0 in D is actually a
C” —function in D. Another proof that any harmonic function is C” is given in the text on page 163.
4. Brownian Motion.

Let X(x,y,z) denote the average first exit time of a particle undergoing Brownian motion in a
bounded region D with initial position (x, y,z). :
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Then X is harmonicin D:
X +X, +X, =0
This and related results are useful in the mathematical modeling of financial markets.

FACT. Harmonic functions satisfy a maximum/minimum principle (cf. pp. 148-9). Thisleadstoa
uniqueness result (cf. pp. 149-150) for solutions to Dirichiet problems involving Laplace’s equation:

Viu=f in D,

u=g on D
See exercise 11 on page 168 for Robin problems and exercise 12(b) on page 168 and exercise 2 on page
174 for Neumann problems involving Laplace’s equation.
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axz + 6_]12 + azZ
particular, V’ =V} whete R is any rotation. (For proofs, see page 150 for two-dimensional rotations

and page 152 for three-dimensional rotations.) This is why the Laplacian often appears when modeling
isotropic phenomena (i.e. those with no preferred direction).

The Laplacian operator V> =

exhibits rotational and translational invariance. In



The Laplacian operator has the following representations.

Cartesian Coordinates Polar or Spherical Polar Coordinates
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Beware: The notation that I use for spherical polar coordinates in three dimensions is standard in
mathematics, but it differs from that commonly used in physics and our PDE text. Consequently, the
representation for the Laplacian I give above differs from Strauss (cf. p. 153). Tor clarity, the diagram
below gives the notation I use for three-dimensional spherical polar coordinates.
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Note that I denote the longitude by & and the colatitude by 4.
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Example 1. (#5 on p. 154) Solve u, +u, =1 if x’+y* <a® subject to the boundary condition u =0

if x* +3* =ad’.
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iExamgle2 (#8 on p. 154) Solve V2u=1 inthe spherical shell a<r<b, giventhat u=0 on.r=a
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