1.(25 pts.) (a) Find the characteristic curves of $y u_{x}-x u_{y}=0$ in the $x y$-plane.
(b) Sketch and identify two characteristic curves of this partial differential equation.
(c) Write the general solution of this partial differential equation in the $x y$-plane.
(d) Find the solution of this partial differential equation which satisfies $u(x, 0)=x^{6}$ for all real x.
(e) In what region of the $x y$-plane is the solution in part (d) uniquely determined?

6 pto. (a) The characteristic curves of the p.d.e. satisfy $\frac{d y}{d x}=\frac{b(x, y)}{a(x, y)}=\frac{-x}{y}$.
Separating variables gives $y d y=-x d x$ and integrating both sides yields $\frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+c_{1}$, or equivalently $x^{2}+y^{2}=c$. $(c=2 c$, is an arbitrary constant
${ }^{3}$ pts. (b) The characteristic curves are circles.
opts. (c) The solutions to the p.d.e. are constant along characteristic curves. Along such a curve $x^{2}+y^{2}=c$ we have

$$
u(x, y)=u\left(x, \pm \sqrt{c-x^{2}}\right)=u(0, \pm \sqrt{c})=f(c) .
$$

Therefore the general solution to the p.d.e. in the $x y$-plane is $u(x, y)=f\left(x^{2}+y^{2}\right)$ where f is any c^{\prime}-function of a single real variable.
uts. (d) $x^{6}=u(x, 0)=f\left(x^{2}+0^{2}\right)=f\left(x^{2}\right)$ for all real x. Thus $f(t)=t^{3}$ for every $t \geqslant 0$, so $u(x, y)=f\left(x^{2}+y^{2}\right)=\left(x^{2}+y^{2}\right)^{3}$ for all (x, y) in the plane.

2 pts. (e) The solution in part (d) is uniquely determined in the entire $x y$-plane.
2.(25 pts.) An elastic string is held fixed at the endpoints and plucked. Assuming that air exerts a resistance at each point of the string which is proportional to the string's velocity at that point, give a careful derivation of the partial differential equation that governs the small vibrations of the string.

Fix $t>0$ and suppose the profile of the string at this instant is as indicated in the diagram. Consider the segment of string between x and $x+\Delta x$. The contact forces \vec{T}_{1} and \vec{T}_{2} that act at the end points of the segment are tangential to the string at the respective points. If α and β are the angles these contact
 forces make with respect $\frac{1}{\omega}$ the horizontal, then

4 pts. to here. $\sin (\alpha) \stackrel{(2)}{=} \frac{u_{x}(x, t)}{\sqrt{1+u_{x}^{2}(x, t)}}$ and

$$
\cos (x) \stackrel{(3)}{=} \frac{1}{\sqrt{1+u_{x}^{2}(x, t)}}
$$

6 pts. to here.
similarly,

$$
\sin (\beta)=\frac{u_{x}(x+\Delta x, t)}{\sqrt{1+u_{x}^{2}(x+\Delta x, t)}}
$$

and

$$
\cos (\beta) \stackrel{(5)}{=} \frac{1}{\sqrt{1+u_{x}^{2}(x+\Delta x, t)}}
$$

Applying Newton's second law, $m \vec{a}=\vec{F}_{n e t}$, to the system of particles comprising the segment of string from x to $x+\Delta x$, we have upon resolving into components:
so
(1) $\tan (x)=$ slope of the tangent line to the profile at x

$$
=u_{x}(x, t)
$$

$\cos (x)^{(3)}$

8 pts, to here. (Horizontal) $\left|\vec{T}_{2}\right| \cos (\beta)-\left|\vec{T}_{1}\right| \cos (\alpha) \stackrel{6}{=} 0$
$\begin{gathered}15 \text { pis. to here (Vertical) } \\ (2+3+2)\end{gathered}\left|\vec{T}_{2}\right| \sin (\beta)-\left|\vec{T}_{1}\right| \sin (\alpha)-\int_{x}^{x+\Delta x} r u_{t}(\xi, t) d \xi=\int_{x}^{(7)} \rho(\xi) u_{t t}^{x}(\xi, t) d \xi$
(OVER)
where r is a positive constant and $\rho(\xi)$ is the linear density of the string at ξ in the interval $[x, x+\Delta x]$. (Here We rave made use of the assumption that the air exerts a resistive force at each point that is proportional to the string's velocity ut at that point.) Equations (3), (5), and (6) imply

$$
\begin{equation*}
\left|\vec{T}_{2}\right|=\left|\vec{T}_{1}\right| \frac{\sqrt{1+u_{x}^{2}(x+\Delta x, t)}}{\sqrt{1+u_{x}^{2}(x, t)}} \tag{8}
\end{equation*}
$$

so substituting from (8) into (7) and using (2) and (4) yields
(9) $\frac{\left|\vec{T}_{1}\right|}{\sqrt{1+u_{x}^{2}(x, t)}}\left(u_{x}(x+\Delta x, t)-u_{x}(x, t)\right)-\int_{x}^{x+\Delta x} r u_{t}(x, t) d \xi=\int_{x}^{x+\Delta x} \rho(\xi) u_{t t}(\xi, t) d \xi$.

Dividing (9) by Δx and letting $\Delta x \rightarrow 0$ produces
(10)

$$
\frac{\left|\vec{T}\left(x, u(x, t), u_{x}(x, t)\right)\right|}{\sqrt{1+u_{x}^{2}(x, t)}} u_{x x}(x, t)-r u_{t}(x, t)=\rho(x) u_{t t}(x, t) .
$$

For small vibrations, $u(x, t)$ and $u_{x}(x, t)$ are quite small so $\sqrt{1+u_{x}^{2}(x, t)} \approx 1$ for all $0 \leq x \leq L$. Thus (8) implies the magnitude of the contact force is approximately constant, say $\left|\vec{T}\left(x, u(x, t), u_{x}(x, t)\right)\right|=$ constant $=T_{0}$. Thus (10) becomes

23 pts, to here.

$$
\begin{equation*}
\frac{T_{0}}{\sqrt{1+u_{x}^{2}(x, t)}} u_{x x}(x, t)-r u_{t}(x, t)=\rho(x) u_{t t}(x, t) . \tag{4}
\end{equation*}
$$

If the string is homogeneous, say $p(x)=$ constant $=\rho_{0}$, and we use the small vibrations approximation, $\sqrt{1+u_{x}^{2}(x, t)} \approx 1$ for all $0 \leq x \leq L$, then (II) becomes

25 pts to here.

$$
\begin{equation*}
T_{0} u_{x x}(x, t)-r u_{t}(x, t)=\rho_{0} u_{t t}(x, t) \tag{12}
\end{equation*}
$$

Where T_{0}, r, and ρ_{0} are positive constants.
3.(25 pts.) Classify the following second order partial differential equations as hyperbolic, parabolic, elliptic, or nonlinear. Find the general C^{2}-solution in the plane whenever possible.
(a) $9 u_{x x}+6 u_{x y}+u_{y y}+100 u=0$
(b) $u_{x x}+u_{y y}+u u_{x}=0$
(c) $u_{x x}-u_{x y}+3 u_{y y}-3 u_{x x}+2 u_{x}-2 u_{y}=0 \Leftrightarrow u_{x x}-4 u_{x y}+3 u_{y y}+2 u_{x}-2 u_{y}=0$.
(a) $B^{2}-4 A C=b^{2}-4(9)(1)=0$ so the p.d.e. is parabolic.
(b) The p.d.e, is nonlinear because of the term $u u_{x}$.
(c) $B^{2}-4 A C=(-4)^{2}-4(1)(3)=4>0$ so the p.d.e. is hyperbolic.

8 pes to here T_{0} solve the p.d.e. in (a) note that it is equivalent to $\left(3 \frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)\left(3 \frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) u+100 u=0$ opts there Let $\left\{\begin{array}{l}\xi=3 x+y \\ \eta=x-3 y\end{array}\right.$. Then by the chain rule, as operators we have

$$
\frac{\partial}{\partial x}=\frac{\partial \xi}{\partial x} \frac{\partial}{\partial \xi}+\frac{\partial y}{\partial x} \frac{\partial}{\partial \eta}=3 \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta} \text { and } \frac{\partial}{\partial y}=\frac{\partial \xi}{\partial y} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial y} \frac{\partial}{\partial \eta}=\frac{\partial}{\partial \xi}-3 \frac{\partial}{\partial \eta} \text {. }
$$

Therefore $3 \frac{\partial}{\partial x}+\frac{\partial}{\partial y}=3\left(3 \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right)+\left(\frac{\partial}{\partial \xi}-3 \frac{\partial}{\partial \eta}\right)=10 \frac{\partial}{\partial \xi}$. Thus the p.d.e. 12 pls.tohere in (a) is equivalent to $\left(10 \frac{\partial}{\partial \xi}\right)\left(10 \frac{\partial}{\partial \xi}\right) u+100 u=0 \Rightarrow \frac{\partial^{2} u}{\partial \xi^{2}}+u=0$.

Consequently, $u=c_{1}(\eta) \cos (\xi)+c_{2}(\eta) \sin (\xi)$, or equivalently,
14 pts. to here.

$$
u(x, y)=f(x-3 y) \cos (3 x+y)+g(x-3 y) \sin (3 x+y)
$$

is the general solution of (a) with f and g arbitrary C^{2}-functions of a single real variab 16 pts. to here. To solve the p.d.e. in (c) note that it is equivalent too $=\left(\frac{\partial}{\partial x}-3 \frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right) u+2\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right.$.

Let $\left\{\begin{array}{l}\xi=3 x+y \\ \eta=x+y\end{array}\right.$. Then the chain rule implies, as operators we have

$$
\frac{\partial}{\partial x}=\frac{\partial \xi}{\partial x} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial x} \frac{\partial}{\partial \eta}=3 \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta} \text { and } \frac{\partial}{\partial y}=\frac{\partial \xi}{\partial y} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial y} \frac{\partial}{\partial \eta}=\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta} \text {. }
$$

Thus $\frac{\partial}{\partial x}-3 \frac{\partial}{\partial y}=3 \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}-3\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right)=-2 \frac{\partial}{\partial \eta}$
and $\frac{\partial}{\partial x}-\frac{\partial}{\partial y}=3 \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}-\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right)=2 \frac{\partial}{\partial \xi}$.
Consequently, the p.de. in (c) is equivalent to
$=0$ pts. to here.

$$
\begin{gathered}
\left(-2 \frac{\partial}{\partial \eta}\right)\left(2 \frac{\partial}{\partial \xi}\right) u+2\left(2 \frac{\partial}{\partial \xi}\right) u=0 \\
-\frac{\partial}{\partial \eta}\left(\frac{\partial u}{\partial \xi}\right)+\frac{\partial u}{\partial \xi}=0 .
\end{gathered}
$$

i2ptis the ce. Letting $v=\frac{\partial u}{\partial \xi}$, this becomes $\frac{\partial v}{\partial \eta}-v=0$. Therefore $v=c(\xi) e^{\eta}$.
That is, $\frac{\partial u}{\partial \xi}=c(\xi) e^{\eta}$ so $u=\int c(\xi) e^{\eta} d \xi=e^{\eta} \int c(\xi) d \xi=e^{\eta}\left(f(\xi)+c_{2}(\eta)\right)$
24 pts. therese. Consequently, $u=f(\xi) e^{\eta}+g(\eta) \quad\left(g(\eta)=e^{\eta} c(\eta)\right)$,
or equivalently
25 pts to here re. $\quad u(x, y)=f(3 x+y) e^{x+y}+g(x+y)$
is the general solution of (c) where f and g are arbitrary c^{2}-functions of a single real variable.
4. (25 pts.) Let $u=u(x, t)$ be a nonconstant C^{2} - solution to

$$
u_{t}-u_{x x}+u_{t}=0
$$

in the upper half-plane $-\infty<x<\infty, 0 \leq t<\infty$, such that for each fixed $t \geq 0, u_{t}, u_{x}, u_{x x}, u_{x t}$, and u_{t} are square-integrable functions of x on $(-\infty, \infty)$ and $\lim _{|x| \rightarrow \infty} u_{x}(x, t) u_{t}(x, t)=0$.
(a) Show that $G(t)=\int_{-\infty}^{\infty}\left\{\left[u_{t}(x, t)\right]^{2}+\left[u_{x}(x, t)\right]^{2}\right\} d x$ is a decreasing function for $t \geq 0$.
(b) Give a physical interpretation of the result in part (a).
(u) $G^{\prime}(t)=\frac{d}{d t} \int_{-\infty}^{\infty}\left\{\left[u_{t}(x, t)\right]^{2}+\left[u_{x}(x, t)\right]^{2}\right\} d x$

$$
=\int_{-\infty}^{\infty} \frac{\partial}{\partial t}\left\{\left[u_{t}(x, t)\right]^{2}+\left[u_{x}(x, t)\right]^{2}\right\} d x
$$

$$
=2 \int_{-\infty}^{\infty}\left[u_{t}(x, t) u_{t t}(x, t)+u_{x}(x, t) u_{t x}(x, t)\right] d x
$$

But $\int_{-\infty}^{\infty} u_{x}(x, t) u_{t x}(x, t) d x=\lim _{M \rightarrow \infty} \int_{N}^{M} \overbrace{u_{x}(x, t)}^{U} \overbrace{u_{t x}(x, t) d x}^{d V}$ (Juterrate by parts

$$
=\lim _{\substack{M \rightarrow \infty \\ N \rightarrow-\infty}}^{N \rightarrow \infty}\left(\left.u_{x}(x, t) u_{t}(x, t)\right|_{x=N} ^{M}-\int_{N}^{M} u_{t}(x, t) u_{\lambda x}(x, t) d x\right)
$$

8 pts. to here.

$$
=-\int_{-\infty}^{\infty} u_{t}(x, t) u_{x x}(x, t) d x .
$$

$$
\begin{aligned}
G^{\prime}(t) & =2 \int_{-\infty}^{\infty}\left[u_{t}(x, t) u_{t t}(x, t)-u_{t}(x, t) u_{x x}(x, t)\right] \\
& =2 \int_{-\infty}^{\infty} u_{t}(x, t)\left[u_{t t}(x, t)-u_{x x}(x, t)\right] d x
\end{aligned}
$$

$$
=-2 \int_{-\infty}^{\infty} u_{t}(x, t) u_{t}(x, t) d x \quad \text { (since } u \text { solves } u_{t t}-u_{x x}+u_{t}=i
$$

so $G^{\prime}(t)=-2 \int_{-\infty}^{\infty}\left[u_{t}(x, t)\right]^{2} d x \leq 0$ and hence G is a 14 pts. there. decreasing function (in the weak sense) on $t \geqslant 0$.
(b) The equation $u_{t t}-u_{x x}+u_{t}=0$ models the small vibrations of a homogeneous elastic string with tension $T_{0}=1$, density $\rho_{0}=1$, and
20 pts to here. damping constant $r=1$. (See problem $\# 2$ on this exam.) The energy at time t of a solution $u=u(x, t)$ to $u_{t t}-u_{x x}+u_{t}=0$ is
22 pts. to here. $\quad E(t)=\int_{-\infty}^{\infty}\left[\frac{1}{2} \rho_{0} u_{t}^{2}(x, t)+\frac{1}{2} T_{0} u_{x}^{2}(x, t)\right] d x=\frac{1}{2} G(t)$.
Since dumping transfers energy from the vibrating string to the $2 s$ pis to cere environment, one expects $E(t)$ (and consequently $G(t)$) to decrease with time t.

