\qquad
1.(33 pts.) (a) Show that the Fourier sine series $\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)$ of $f(x)=4 x(1-x)$ on $[0,1]$ is

$$
4 x(1-x) \sim \frac{32}{\pi^{3}} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) \pi x)}{(2 k-1)^{3}}
$$

(3) (b) On the same coordinate axes, sketch the graph of f and the third Fourier sine partial sum

$$
S_{3} f(x)=\sum_{n=1}^{3} b_{n} \sin (n \pi x) \text {. }
$$

(6) (c) Show that the Fourier sine series of f converges uniformly to f on the interval $[0,1]$.
(d) Discuss the pointwise convergence and L^{2} - convergence of the Fourier sine series of f. Give reasons for your answers.
(e) Use the results of the previous parts of this problem to find the sums of the series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2 k-1)^{3}} \text { and } \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{6}} .
$$

(a) $b_{n}=\frac{\langle f, \sin (n \pi \cdot)\rangle}{\langle\sin (n \pi), \sin (n \pi)\rangle}=\frac{\int_{0}^{1} 4 x(1-x) \sin (n \pi x) d x}{\int_{0}^{1} \sin ^{2}(n \pi x) d x}=2 \int_{0}^{1} \overbrace{4 x(1-x)}^{U} \overbrace{\sin (n \pi x) d x}^{d r}$

$$
\begin{aligned}
& =\frac{8 x(1-x)}{\left(\left.\frac{-\cos (n \pi x)}{n \pi}\right|_{0} ^{1} \rightarrow 0\right.} \int_{0}^{1}(8-16 x)\left(\frac{-\cos (n \pi x)}{n \pi}\right) d x=\frac{1}{n \pi} \int_{0}^{1} \overbrace{(8-16 x)}^{U} \overbrace{\cos (n \pi x)}^{d V} d x \\
& =\left.\frac{1}{n \pi}(8-16 x)\left(\frac{\sin (n n x)}{n \pi}\right)\right|_{0} ^{1}-\frac{1}{n \pi} \int_{0}^{1}-16 \frac{\sin (n \pi x)}{n \pi} d x=\left.\frac{16}{(n \pi)^{2}}\left(\frac{-\cos (n \pi x)}{n \pi}\right)\right|_{0}=\frac{16\left[1-(-1)^{n}\right]}{(n \pi)^{3}}
\end{aligned}
$$

$\therefore b_{n}= \begin{cases}0 & \text { if } n=2 k \text { is even, } \\ \frac{32}{[\pi(2 k-1)]^{3}} & \text { if } n=2 k-1 \text { is odd. }\end{cases}$

$$
4 x(1-x) \sim \sum_{n=1}^{\infty} b_{n} \sin (n \pi x)=\frac{32}{\pi^{3}} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) \pi x)}{(2 k-1)^{3}}
$$

(b) $S_{3} f(x)=\sum_{n=1}^{3} b_{n} \sin (n \pi x)=\frac{32}{\pi^{3}}\left(\sin (\pi x)+\frac{1}{27} \sin (3 \pi x)\right) \cdot{ }^{\text {The graphs of } f \text { and } S_{3} \text { on }} \begin{aligned} & 0 \leq x \leqslant 1 \text { are nearly indistinguishable. }\end{aligned}$
(c) Note that $\Phi=\{\sin (\pi x), \sin (2 \pi x), \sin (3 \pi x), \ldots\}$ is the complete orthogonal set of eigenfunction for $\Psi^{\prime \prime}(x)+\lambda \nabla(x)=0$ in $0<x<1$, subject to the Dirichlet boundary conditions $X(0)=0, X(1)=0$. Also observe that
(i) $f(x)=4 x(1-x), f^{\prime}(x)=4-8 x$, and $f^{\prime \prime}(x)=-8$ exist and are continuous for $0 \leqslant x \leqslant 1$, and
(ii) $f(0)=0, f(1)=0$ so f satisfies the given (symmetric) Dirichlet boundary conditions.
By Theorem 2, the Fourier sine series of f converges uniformly to f on $[0,1]$.
(d) Since the uniform convergence of a sequence of functions on a a interval implies both the pointwise and the L^{2}-convergence of that sequence of functions on the same interval, it follows from part (c) that the Fourier sine series of f at x converges pointwise to $f(x)$ for all x in $[0,1]$ and the Fourier sine series of f converges to f in the L^{2}-sense on $[0,1]$.
(e) By part (d) we have $1=4\left(\frac{1}{2}\right)\left(1-\frac{1}{2}\right)=f\left(\frac{1}{2}\right)=\frac{32}{\pi^{3}} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) \pi / 2)}{(2 k-1)^{3}}=\frac{32}{\pi^{3}} \sum_{k=1}^{\infty} \frac{(-1)}{(2 k}$ and it follows that $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2 k-1)^{3}}=\frac{\pi^{3}}{32} \doteq 0.968946146259$.
Since $\Phi=\{\sin (\pi x), \sin (2 \pi x), \sin (3 \pi x), \ldots\}$ is a complete orthogonal set on $[0,1]$, Parseval's identity

$$
\sum_{n=1}^{\infty}\left|b_{n}\right|^{2} \int_{0}^{1} \sin ^{2}(n \pi x) d x=\int_{0}^{1}|f(x)|^{2} d x
$$

applied to $f(x)=4 x(1-x)$ gives $\left.\sum_{k=1}^{\infty}\left(\frac{32}{\pi^{3}(2 k-1)^{3}}\right)^{2} \int_{0}^{1} \sin ^{2}(2 k-1) \pi x\right) d x=\int_{0}^{1}(4 x(1-x))^{2} d x$ therefore $\frac{512}{\pi^{6}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{6}}=16 \int_{0}^{1}\left(x^{2}-2 x^{3}+x^{4}\right) d x=\left.16\left(\frac{x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}\right)\right|_{0} ^{1}=\frac{16}{30}=\frac{8}{15}$ Consequently $\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{6}}=\frac{\pi^{6}}{960} \doteq 1.00144707664$.
2.(34 pts.) Find a solution of $u_{t}-t^{2} u_{x t}-u=0$ in the open strip $\left.\left.0<x<1,0<t<\right)^{\infty}\right)_{\text {(s) }}^{\text {such that } u}$ is continuous on the closure of the strip, satisfies the boundary conditions $u(0, t) \underline{\underline{\underline{~}}} u(1, t)$ for $t \geq 0$, and satisfies the initial condition $u(x, 0) \stackrel{\oplus}{\bullet} 4 x(1-x)$ for $0 \leq x \leq 1$. (Note: You may find useful the results of problem 1.)
We use the method of separation of variables. We look for nontrivial solutions of (1)-(2)-(3) of the form $u(x, t)=\bar{X}(x) T(t)$. Substituting in (1) yields $X(x) T^{\prime}(t)-t^{2} \mathbb{Z}^{\prime \prime}(x) T(t)-\Sigma(x) T(t)=$, and dividing through by $\bar{\Sigma}(x) T(t)$ produces $\frac{T^{\prime}(t)}{T(t)}-t^{2} \frac{\bar{Z}^{\prime \prime}(x)}{\bar{Z}(x)}-1=0$. Rearranging we have
(5) $\quad-\frac{\mathbb{Z}^{\prime \prime}(x)}{\bar{X}(x)}=\frac{1}{t^{2}}\left(1-\frac{T^{\prime}(t)}{T(t)}\right)=$ constant $=\lambda$.

Substituting $u(x, t)=\bar{X}(x) T(t)$ in (2) and (3) and using the fact that we seek solutions that are 9 per tore not identically zero leads to $\bar{X}(0)=0=\bar{Z}(1)$. Combining this with (5) we have the system 12 pts, 6 he e (6)

$$
\left\{\begin{array}{l}
\bar{X}^{\prime \prime}(x)+\lambda \bar{X}(x)=0, \quad \bar{Z}(0)=0=\bar{X}(1) \\
T^{\prime}(t)+\left(\lambda t^{2}-1\right) T(t)=0
\end{array}\right.
$$

The first line in (6) is a standard eigenvalue problem for the operator $-\frac{d^{2}}{d x^{2}}$ with Dirichlet 16 pts.tohere boundary conditions. The eigenvalues are $\lambda_{n}=(n \pi)^{2}$ and the eiyenfunctions are $\mathbb{X}_{n}(x)=\sin (n \pi \pi x$ where $n=1,2,3, \ldots$ (See Sec. 4.1.) Therefore thelline in (6) becomes $T_{n}^{\prime}(t)+\left(n^{2} \pi^{2} t^{2}-1\right) T_{n}(t)=0$. Separating variables in this ODE yields

19 pts.toritie

$$
\ln \left(T_{n}(t)\right)=\int \frac{T_{n}^{\prime}(t)}{T_{n}(t)} d t=\int\left(1-n^{2} \pi^{2} t^{2}\right) d t=t-\frac{n^{2} \pi^{2} t^{3}}{3}+c
$$

22 pts.tonere so $T_{n}(t)=A e^{t-\frac{n^{2} \pi^{2} t^{3}}{3}}$ where $A=e^{c}$, The superposition principle gives the formal solution to (1)-(2)-(3):

$$
25 \text { pts. to here. } u(x, t)=\sum_{n=1}^{\infty} b_{n} \bar{X}_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x) e^{t-\frac{n^{2} \pi^{2} t^{3}}{3}} \text {. }
$$

We need to choose the arbitrary constants $b_{1}, b_{2}, b_{3}, \ldots$ so (4) is satisfied: pts to here.

$$
4_{x}(1-x)=u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin (\pi n x) \text { for } 0 \leq x \leq 1 \text {. }
$$

31) By problem 1, we should take $b_{2 k-1}=\frac{32}{\pi^{3}(2 k-1)^{3}}$ and $b_{2 k}=0$ for $k=1,2,3, \ldots$ Therefore
3 pts . hare $u(x, t)=\frac{32}{\pi^{3}} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) \pi x) e^{t-\frac{(2 k-1) \pi^{3} t^{3}}{3}}}{(2 k-1)^{3}}$
Solves (1) -(2)-(3)-(4).
3.(33 pts.) $)^{b}$ (a) Find a solution of $u_{x x}+u_{y y}+u_{z z}=x^{2}+y^{2}+z^{2}$ in the open spherical shell $1<\sqrt{x^{2}+y^{2}+z^{2}}<2$ such that u is continuous on the closure of the shell and satisfies the boundary conditions $u(x, y, z)=\frac{21}{20}$ if $\sqrt{x^{2}+y^{2}+z^{2}}=1$ and $u(x, y, z)=\frac{23}{10}$ if $\sqrt{x^{2}+y^{2}+z^{2}}=2$.
(b) Is the solution to the problem in part (a) unique? Justify your answer.
(a) In spherical coordinates the problem becomes

$$
\left\{\begin{array}{l}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin (\rho)} \frac{\partial}{\partial \varphi}\left(\sin (\varphi) \frac{\partial u}{\partial \varphi}\right)+\frac{1}{r^{2} \sin ^{2}(\varphi)} \frac{\partial^{2} u}{\partial \theta^{2}}=r^{2} \\
u=\frac{21}{20} \text { if } r=1, \quad u=\frac{23}{10} \text { if } r=2 .
\end{array}\right.
$$

Because the PDE, the region, and the boundary conditions are invariant under rotations, we will assume that the solution $u=u(r, \theta, p)$ is a function of r alone, independent of the angles θ and φ. Then $\frac{\partial u}{\partial \phi}=0=\frac{\partial u}{\partial \theta}$ so the PDE reduces to an ODE:
10 pts. $\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d u}{d r}\right)=r^{2}$. Then $\frac{d}{d r}\left(r^{2} \frac{d u}{d r}\right)=r^{4}$ so integration gives $r^{2} \frac{d u}{d r}=\frac{r^{5}}{5}+c_{1}$, to pts. to here. and hence $\frac{d u}{d r}=\frac{r^{3}}{5}+\frac{c_{1}}{r^{2}}$. Integrating again produces $u(r)=\frac{r^{4}}{20}-\frac{c_{1}}{r}+c_{2}$.
Applying the boundary conditions we have $\frac{21}{20}=u(1)=\frac{1}{20}-c_{1}+c_{2}$ and $\frac{23}{10}=u(2)=\frac{16}{20}-\frac{c_{1}}{2}+c_{2}$. Thatis, $\left\{\begin{array}{l}1=-c_{1}+c_{2} \\ \frac{3}{2}=\frac{-c_{1}}{2}+c_{2}\end{array}\right.$. Subtracting equations yields $\frac{1}{2}=\frac{c_{1}}{2}$ so $c_{1}=1$. Then substituting in the first equation of the system gives $c_{2}=2$. 30 pts. Consequently, $u(r)=\frac{r^{4}}{20}-\frac{1}{r}+2$. In cartesian coordinates, to here,

$$
u(x, y, z)=\frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{20}-\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}+2 .
$$

3pts. (b) By the uniqueness theorem for solutions to Poisson's equation in the presence of Dirichlet boundary conditions (see text, pp.149-150), it follows that the solution in part (a) is unique.

Convergence Theorems

Consider the eigenvalue problem

$$
\begin{equation*}
X^{\prime \prime}(x)+\lambda X(x)=0 \text { in } a<x<b \text { with any symmetric boundary conditions } \tag{1}
\end{equation*}
$$

and let $\Phi=\left\{X_{1}, X_{2}, X_{3}, \ldots\right\}$ be the complete orthogonal set of eigenfunctions for (1). Let f be any absolutely integrable function defined on $a \leq x \leq b$. Consider the Fourier series for f with respect to Ф :

$$
f(x) \sim \sum_{n=1}^{\infty} A_{n} X_{n}(x)
$$

where

$$
A_{n}=\frac{\left\langle f, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle} \quad(n=1,2,3, \ldots) .
$$

Theorem 2. (Uniform Convergence) If
(i) $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ exist and are continuous for $a \leq x \leq b$ and
(ii) f satisfies the given symmetric boundary conditions, then the Fourier series of f converges uniformly to f on $[a, b]$.

Theorem 3. (L^{2}-Convergence) If

$$
\int_{a}^{b}|f(x)|^{2} d x<\infty
$$

then the Fourier series of f converges to f in the mean-square sense in (a, b).
Theorem 4. (Pointwise Convergence of Classical Fourier Series)
(i) If f is a continuous function on $a \leq x \leq b$ and f^{\prime} is piecewise continuous on $a \leq x \leq b$, then the classical Fourier series (full, sine, or cosine) at x converges pointwise to $f(x)$ in the open interval $a<x<b$.
(ii) If f is a piecewise continuous function on $a \leq x \leq b$ and f^{\prime} is piecewise continuous on $a \leq x \leq b$, then the classical Fourier series (full, sine, or cosine) converges pointwise at every point x in $(-\infty, \infty)$. The sum of the Fourier series is

$$
\sum_{n=1}^{\infty} A_{n} X_{n}(x)=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}
$$

for all x in the open interval (a, b).

Theorem 4∞. If f is a function of period $2 l$ on the real line for which f and f^{\prime} are piecewise continuous, then the classical full Fourier series converges to $\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}$ for every real x.

Trigonometric Identities

$$
\begin{aligned}
& \cos ^{2}(A)=\frac{1}{2}+\frac{1}{2} \cos (2 A) \\
& \sin ^{2}(A)=\frac{1}{2}-\frac{1}{2} \cos (2 A) \\
& \sin (A) \sin (B)=\frac{1}{2} \cos (A-B)-\frac{1}{2} \cos (A+B) \\
& \sin (A) \cos (B)=\frac{1}{2} \sin (A-B)+\frac{1}{2} \sin (A+B) \\
& \cos (A) \cos (B)=\frac{1}{2} \cos (A-B)+\frac{1}{2} \cos (A+B) \\
& \cos ^{3}(A)=\frac{3}{4} \cos (A)+\frac{1}{4} \cos (3 A) \\
& \sin ^{3}(A)=\frac{3}{4} \sin (A)-\frac{1}{4} \sin (3 A)
\end{aligned}
$$

Expressions for the Laplacian Operator

$\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} \quad$ (polar coordinates)
$\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}} \quad$ (cylindrical coordinates)
$\nabla^{2} u=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin (\varphi)} \frac{\partial}{\partial \varphi}\left(\sin (\varphi) \frac{\partial u}{\partial \varphi}\right)+\frac{1}{r^{2} \sin ^{2}(\varphi)} \frac{\partial^{2} u}{\partial \theta^{2}} \quad$ (spherical coordinates)

Expression for the Gradient Operator

$\nabla f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \varphi} \hat{\varphi}+\frac{1}{r \sin (\varphi)} \frac{\partial f}{\partial \theta} \hat{\theta} \quad$ (spherical coordinates)

Math 325
Exam III
Fall 2010
number taking exam: 36
median: 82
mean: 74.8
standard deviation: 17.4

Distribution of Scores:

Range	Graduate Grade	Undergraduate Grade	Frequency
$87-100$	A	A	13
$73-86$	B	B	8
$60-72$	C	B	6
$50-59$	C	C	6
$0-49$	F	D	3

