Exam III Spring 2011

Name: Dr. Grow
1.(30 pts.) Consider the operator $T=-\frac{d^{2}}{d x^{2}}$ on the space $V=\left\{\varphi \in C^{2}[0, \pi]: \varphi(0)=0\right.$ and $\left.\frac{d \varphi}{d x}(\pi)=0\right\}$.
(a) Show that T is a symmetric operator on V.
(b) Are all the eigenvalues of T on V real numbers? Justify your answer.
(c) Are the eigenfunctions of T on V corresponding to distinct eigenvalues orthogonal on $[0, \pi]$? Why?
(d) Are all the eigenvalues of T on V nonnegative? Justify your answer.
(e) Compute all the eigenvalues and eigenfunction for the operator T on V.
$\left.\begin{aligned} & \text { 8pts. (a) Let } \varphi_{1} \text { and } \varphi_{2} \text { belong to } V \text {. Then } \\ & \left\langle T \varphi_{1}, \varphi_{2}\right\rangle=\int_{0}^{\pi} T \varphi_{1}(x) \overline{\varphi_{2}(x)} d x=-\int_{0}^{\pi} \overbrace{\overline{\varphi_{2}(x)}}^{\varphi_{1}^{\prime \prime}(x) d x}=-\left[\overline{\varphi_{2}(x)} \varphi_{1}^{\prime}(x)\right.\end{aligned}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{\int_{0}^{v}(x)}{\varphi_{2}^{\prime}(x) \varphi_{1}^{\prime}(x) d x}$.

$$
=\left.\left[\overline{\varphi_{2}^{\prime}(x)} \varphi_{1}(x)-\overline{\varphi_{2}(x)} \varphi_{1}^{\prime}(x)\right]\right|_{0} ^{\pi}-\int_{0}^{\pi} \varphi_{1}(x) \overline{\varphi_{2}^{\prime \prime}(x)} d x
$$

$\left.\therefore \quad\left\langle T \varphi_{1}, \varphi_{2}\right\rangle=\int_{0}^{\pi} \varphi_{1}(x) \overline{\left(-\varphi_{2}^{\prime \prime}(x)\right.}\right) d x=\left\langle\varphi_{1}, T \varphi_{2}\right\rangle$. This shows that T is a symmetric operator on V.
(b) By Theorem 2 in Sec.5.3, all the eigenvalues of the symmetric operator T on t are real.
(c) By Theorem 1 in Sec.5.3, eigenfunctions corresponding to distinct eigenvalues of the symmetric operator T on V are orthogonal on $0 \leq x \leq \pi$.
(d) If φ is any real-valued function belonging to V then $\left.\varphi(x) \varphi^{\prime}(x)\right|_{0} ^{\pi}=\varphi(\pi) \varphi^{\prime}(\pi)-$ $\varphi(0) \varphi^{\prime}(0)=0$. Therefore the symmetric operator Ton V has no negative eigenvalues by Theorem 3 in $\mathrm{Sec}, 5.3$.
(e) To find the eigenvalues and eigenfunctions for the operator T on V, we need to find all (complex) numbers λ for which there corresponds a nonzero function
φ in V satisfying $T \varphi=\lambda \varphi$. That is, we need to solve the eigenvalue problem

$$
\varphi^{\prime \prime}(x)+\lambda \varphi(x) \stackrel{(1)}{=} 0, \quad \varphi(0) \stackrel{(2)}{=} 0, \varphi^{\prime}(\pi)=0
$$

By parts (b) and (d) of this problem we know that λ is real and $\lambda \geqslant 0$.
Case 1: $\lambda>0$, say $\lambda=\beta^{2}$ where $\beta>0$.
The general solution of (1) is $\varphi(x)=c_{1} \cos (\beta x)+c_{2} \sin (\beta x)$ where c_{1} and c_{2} are arbitrary constants. Note that $\varphi^{\prime}(x)=-\beta c_{1} \sin (\beta x)+\beta c_{2} \cos (\beta x)$. Applying (2) we find $0=\varphi(0)=c_{1} \cos (0)+c_{2} \sin (0)=c_{1}$. Applying (3) yields $0=\varphi^{\prime}(\pi)=$ $-\beta c_{1} \sin (\beta \pi)+\beta c_{2} \cos (\beta \pi)=\beta c_{2} \cos (\beta \pi)$. In order that φ be nonzero it is necessary that $c_{2} \neq 0$ and hence $\cos (\beta \pi)=0$. Since cosine vanishes only at odd multiples of $\frac{\pi}{2}$, it follows that $\beta \pi=\beta_{n} \pi=(2 n-1) \frac{\pi}{2}$ so $\beta_{n}=\frac{2 n-1}{2}(n=1,2,3) \ldots$ Therefore

$$
\begin{aligned}
& \lambda_{n}=\beta_{n}^{2}=\left(\frac{2 n-1}{2}\right)^{2} \quad(n=1,2,3, \ldots) \\
& \phi_{n}(x)=\sin \left((2 n-1) \frac{x}{2}\right) \quad(n=1,2,3, \ldots)
\end{aligned}
$$

are the eigenvalues and eigenfunctions of T on V, respectively. (see case 2 below which shows that $\lambda=0$ is not an eigenvalue of T on V.)

Case 2: $\lambda=0$.
The general solution of (1) in this case is $\varphi(x)=c_{2} x+c_{1}$ where c_{1} and c_{2} are arbitrary constants. Note that $\phi^{\prime}(x)=c_{2}$. Applying (2) and (3) yield $0=\varphi(0)=c_{2}(0)+c_{1}=c_{1}$ and $0=\varphi^{\prime}(\pi)=c_{2}$. Therefore $\varphi=0$ so $\lambda=0$ is not an eigenvalue of T on T.
2.(30 pts.) (a) Show that the Fourier series of the function $f(x)=x(2 \pi-x)$ with respect to the orthogonal set of functions $\Phi=\{\sin ((2 n-1) x / 2)\}_{n=1}^{\infty}$ on the interval $[0, \pi]$ is

$$
\frac{32}{\pi} \sum_{n=1}^{\infty} \frac{\sin ((2 n-1) x / 2)}{(2 n-1)^{3}}
$$

(b) Write $S_{2} f(x)$, the second Fourier partial sum of the Fourier series of f with respect to Φ, and sketch the graphs of f and $S_{2} f$ over the interval $0 \leq x \leq \pi$ on the same set of coordinate axes. (To save time, raise your hand and I will come to your seat and grade your graphs from your calculator's display.)
(c) Does the Fourier series of f with respect to Φ converge to f uniformly on $[0, \pi]$? Justify your answer.
18 ts. (a) The Fourier series of f with respect to Φ on $[0, \pi]$ is $f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin ((2 n-1) x / 2)$

$=\frac{2}{\pi} \int_{0}^{\pi} \overbrace{x(2 \pi-x)}^{U} \overbrace{\sin ((2 n-1) x / 2) d x}^{d V}=\frac{2}{\pi}[\frac{x(2 \pi-x)}{0} \frac{\left(-\frac{\cos (2 n-1) x / 2)}{(2 n-1) / 2}\right)}{0}+\int_{0}^{\pi} \overbrace{0}^{(2 \pi-2 x)} \overbrace{\left.\left.\frac{\cos ((2 n-1)}{2}\right) x\right) d x}^{(2 n-1) / 2}$
$=\frac{4}{\pi(2 n-1)}\left[\left.\frac{2(\pi-x) \sin ((2 n-2) x)}{(2 n-1) / 2}\right|_{0} ^{\pi / 2}+\int_{0}^{\pi} \frac{\sin \left(\left(\frac{2 n-1}{2}\right) x\right)}{(2 n-1) / 2} 2 d x\right]=\frac{16}{\pi(2 n-1)^{2}} \cdot\left(-\frac{\cos \left(\left(\frac{2 n-1}{2}\right) x\right)}{(2 n-1) / 2}\right) \int_{0}^{\pi}=\frac{32}{\pi(2 n-1)^{3}}$
Thus

$$
f(x) \sim \frac{32}{\pi} \sum_{n=1}^{\infty} \frac{\sin ((2 n-1) x / 2)}{(2 n-1)^{3}}
$$ is the Fourier series of w.r.t. Φ.

Spis. (b) $S_{2} f(x)=\frac{32}{\pi} \sum_{n=1}^{2} \frac{\sin ((2 n-1) x / 2)}{(2 n-1)^{3}}=\frac{32}{\pi}\left(\sin \left(\frac{x}{2}\right)+\frac{1}{27} \sin \left(\frac{3 x}{2}\right)\right)$

(The graph of $y=S_{2} f(x)$ was indistinguishable from $y=f(x)$ on an $H P-49 G$.)

7 pts (c) We apply Theorem 2 in Sec.5.4. (See the attached sheet on convergence theorems for a statement of this theorem.) Note that
(2) $\quad f(x)=x(2 \pi-x), f^{\prime}(x)=2 \pi-2 x$, and $f^{\prime \prime}(x)=-2$ exist and are symmetric continuous for $0 \leq x \leq \pi$. Also f satisfies the symmeundary conditions
(3) $f(0)=0$ and $f^{\prime}(\pi)=0$ that lead to the eigenfunctions $\Phi=\left\{\sin \left(\left(\frac{2 n-1}{2}\right) x\right)\right\}_{n=1}^{\alpha}$ on $[0, \pi]$. (See problem 1.) By Theorem 2 in Sec.5.4, the Fourier series of f w.r.t. I converges uniformly to f on $[0, \pi]$.
3.(40 pts.) Let a be a positive constant. Find a solution to the following problem. You may use the results stated in problems 1 and 2, even if you did not successfully solve those problems.

$$
\begin{gathered}
u_{t}-u_{x x}+a u \stackrel{0}{=} 0 \text { for } 0<x<\pi, 0<t<\infty \\
u(0, t) \stackrel{e}{2}_{=}^{=} \text {and } u_{x}(\pi, t) \stackrel{(3)}{=} 0 \text { if } 0 \leq t<\infty, \\
u(x, 0) \stackrel{\oplus}{=} x(2 \pi-x) \text { if } 0 \leq x \leq \pi
\end{gathered}
$$

Bonus (10 pts.): Is there at most solution to the problem above that is continuous on the strip $0 \leq x \leq \pi, 0 \leq t<\infty$? Justify your answer.

We use the method of separation of variables. Let $u(x, t)=X(x) T(t)$ be a nontrivial solution of the homogeneous portion of this problem: (1) -(2)-(3). Substituting in (1) yields $Z(x) T^{\prime}(t)-\bar{Z}^{\prime \prime}(x) T(t)+a \Sigma(x) T(t)=0$. Rearranging yields $\frac{-\mathbb{Z}^{\prime \prime}(x)}{\bar{Z}(x)}=-\frac{T^{\prime}(t)}{T(t)}-a=$ constant $=\lambda$. Substituting $u(x, t)=X(x) T(t)$ into (2) and (3) yields $\bar{X}(0) T(t)=0$ and $\bar{Z}^{\prime}(\pi) T(t)=0$ for all $t \geqslant 0$. Since $\bar{X}(0) \neq 0$ implies $u(y, t)=\bar{Z}(x) T(t)$ $=0$ for all $0 \leq x \leq \pi$ and $t \geqslant 0$, this is impossible; u was assumed to be nontrivial. Therefore $Z(0)=0$. A similar argument shows $\nabla^{\prime}(\pi)=0$. Summarizing, we have the system:

$$
\left\{\begin{array}{l}
Z^{\prime \prime}(x)+\lambda \bar{Z}(x) \stackrel{(5)}{=} 0, \quad \nabla(0) \stackrel{(6)}{=} 0 \text { and } \nabla^{\prime}(\pi) \stackrel{(8)}{=} 0 \\
T^{\prime}(t)+(a+\lambda) T(t) \stackrel{(8)}{=} 0
\end{array}\right.
$$

By problem 1, the eigenvalues of (5) -(b) $-(7)$ are $\lambda_{n}=\left(\frac{2 n-1}{2}\right)^{2}$ and the corresponding eigenfunction are $\left.\nabla_{n}(x)=\sin \left(\frac{2 n-1}{2}\right) x\right) \quad(n=1,2,3, \ldots)$. The solution of (8) when $\lambda=\lambda_{n}$ is $T_{n}(t)=e^{-\left[a+\lambda_{n}\right] t}$ (up to a constant multiple) so $u_{n}(x, t)=E_{n}(x) T_{n}(t)=\sin \left(\left(\frac{2 n-1}{2}\right) x\right) e^{-a t} e^{-\left(\frac{2 n-i}{2}\right)^{2} t} \quad(n=1,2,3, \ldots)$ solves (1)-(2)-(3).

The superposition principle shows that

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \left(\left.\frac{2 n-1}{2} \right\rvert\, x\right) e^{-a t \cdot e^{-\left(\frac{2 n-1}{2}\right)^{2} t}}
$$

is a formal solution to (1)-(2)-(3) for any choice of constants $b_{1}, b_{2}, b_{3}, \ldots$

To satisfy (4) we need

$$
x(2 \pi-x)=f(x)=u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \left(\left(\left.\frac{2 n-1}{2} \right\rvert\, x\right)\right.
$$

37 for all $0 \leq x \leq \pi$. By problem 2 we should choose $b_{n}=\frac{32}{\pi(2 n-i)^{3}}$ for $n=1,2,3, \ldots$
Therefore

$$
u(x, t)=\frac{32 e^{-a t}}{\pi} \sum_{n=1}^{\infty} \frac{\left.e^{-\left(n+\frac{1}{2}\right)^{2} t} \sin \left(n-\frac{1}{2}\right) x\right)}{(2 n-1)^{3}}
$$

solves (1)-(2)-(3)-(4).
Bonus: Yes, there is only one continolution to (1)-(2)-(3)-(4). To see this suppose that $u=u_{1}(x, t)$ and $u=u_{2}(x, t)$ are contusions to (1)-(2)-(3)-(4) and consider $v(x, t)=u_{1}(x, t)-u_{2}(x, t)$. Then v is continuous ${ }^{\text {solution to the system: }}$

$$
\begin{cases}v_{t}-v_{x x}+a v \stackrel{(9)}{=} 0 & \text { for } 0<x<\pi, 0<t<\infty, \\ v(0, t) \stackrel{(10)}{=} 0 & \text { and } \\ v_{x}(\pi, t) \stackrel{(11)}{=} 0 & \text { for } 0 \leq t<\infty \\ v(x, 0) \stackrel{(12)}{=} 0 & \text { for } 0 \leq x \leq \pi .\end{cases}
$$

Consider the energy function of v :

$$
E(t)=\left(\int_{0}^{\pi} v^{2}(x, t) d x\right)^{1 / 2} \quad(t \geqslant 0)
$$

Then $2 E(t) \frac{d E}{d t}=\frac{d}{d t} \int_{0}^{\pi} v^{2}(x, t) d x=\int_{0}^{\pi} \frac{\partial}{\partial t}\left(v^{2}(x, t)\right) d x=\int_{0}^{\pi} 2 v(x, t) v(x, t) d x$ Substituting for $v_{t}^{u \operatorname{sing}}(9)$ in the integrand in the right member of the above equation
yields
6 is. to here.

$$
\begin{aligned}
E(t) \frac{d E}{d t} & =\int_{0}^{\pi} v(x, t)\left[v_{x x}(x, t)-a v(x, t)\right] d x \\
& =-a \int_{0}^{\pi} v^{2}(x, t) d x+\int_{0}^{\pi} \overbrace{v(x, t)}^{v} \overbrace{v_{x x}(x, t)}^{d V} d x \\
& =-a \int_{0}^{\pi} v^{2}(x, t) d x+\left.\int_{v}^{v(x, t) v_{x}}(x, t)\right|_{x=0} ^{\pi}-\int_{0}^{\pi} v_{x}^{2}(x, t) d x .
\end{aligned}
$$

By (1) and (10), we have $\left.v(x, t) v_{x}(x, t)\right|_{x=0} ^{\pi}=0$. Therefore

$$
E(t) \frac{d E}{d t}=-\int_{0}^{\pi}\left[a v^{2}(x, t)+v_{x}^{2}(x, t)\right] d x \leq 0
$$

and it follows that E is a decreasing function on the interval $0 \leq t<\infty$. Thus, for $t>0$,

$$
0 \leqslant E(t) \leqslant E(0)=\left(\int_{0}^{\pi} v^{2}(x, 0) d x\right)^{1 / 2}=0
$$

by (12). By the vanishing theorem (and continuity of v) it follows that $v(x, t)=0$ for all $0 \leq x \leq \pi$ and $t \geqslant 0$. That is, $u_{1}(x, t)=u_{2}(x, t)$ for $0 \leq x \leq \pi$ and $t \geq 0$. This shows that the solution found in problem 3 is unique.

Convergence Theorems

Consider the eigenvalue problem

$$
\begin{equation*}
X^{\prime \prime}(x)+\lambda X(x)=0 \text { in } a<x<b \text { with any symmetric boundary conditions } \tag{1}
\end{equation*}
$$

and let $\Phi=\left\{X_{1}, X_{2}, X_{3}, \cdots, \quad\right.$ be the complete orthogonal set of eigenfunctions for (1). Let f be any absolutely integrable function defined on $a \leq x \leq b$. Consider the Fourier series for f with respect to Φ :

$$
\sum_{n=1}^{\infty} A_{n} X_{n}(x)
$$

where

$$
A_{n}=\frac{\left\langle f, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle} \quad(n=1,2,3, \ldots) .
$$

Theorem 2. (Uniform Convergence) If
(i) $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ exist and are continuous for $a \leq x \leq b$ and
(ii) f satisfies the given symmetric boundary conditions, then the Fourier series of f converges uniformly to f on $[a, b]$.

Theorem 3. (L^{2}-Convergence) If

$$
\int_{1}^{n}|f(x)|^{2} d x<\infty
$$

then the Fourier series of f converges to f in the mean-square sense in (a, b)
Theorem 4. (Pointwise Convergence of Classical Fourier Series)
(i) If f is a continuous function on $a \leq x \leq b$ and f^{\prime} is piecewise continuous on $a \leq x \leq b$, then the classical Fourier series (full, sine, or cosine) at x converges pointwise to $f(x)$ in the open interval $a<x<b$.
(ii) If f is a piecewise continuous function on $a \leq x \leq b$ and f^{\prime} is piecewise continuous on $a \leq x \leq b$, then the classical Fourier series (full. sine, or cosine) converges pointwise at every point x in $(-\infty, \infty)$. The sum of the Fourier series is

$$
\sum_{n=1}^{\infty} A_{n} x_{n}(x)=\frac{f\left(x^{+}\right)+f\left(x^{+}\right)}{2}
$$

for all x in the open interval (a, b)
Theorem 40 . If f is a function of period $2 l$ on the real line for which f and f^{\prime} are piecewise continuous, then the classical full Fourier series converges th $\frac{f(x)+f(x)}{}$ for every real x.

Exam III
Math 325
Spring 2011

$$
n: 23
$$

mean: 66.9 median: 75
standard deviation: 27.6

Distribution of Scores Graduate
Letter Grade
undergraduate Letter Grade

Frequency

$$
\begin{align*}
& 87-100 \\
& 73-86 \\
& 60-72 \\
& 50-59 \\
& 0-49
\end{align*}
$$

$$
B
$$

$$
C
$$

$$
C
$$

$$
F
$$

A

