Exam III
Summer 2009

Name: Dr. Grow
(1 pt.)
1.(33 pts.) (a) Show that the Fourier sine series of $f(x)=x(\pi-x)$ on $[0, \pi]$ is $\sum_{k=0}^{\infty} \frac{8 \sin ((2 k+1) x)}{\pi(2 k+1)^{3}}$.
(b) On the same coordinate axes, sketch the graph of f and the sum of the first three nonzero terms of the Fourier sine series of f on $[0, \pi]$.
(c) Based on the graphs in part (b), does it appear that the Fourier sine series of f converges uniformly to f on $[0, \pi]$?
(d) Assuming that the Fourier sine series of f converges pointwise to f on $[0, \pi]$, use the results above to find the sum of the infinite series $1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots$.

16
(a)

$$
\begin{aligned}
& b_{n}=\frac{\langle f, \sin (n \cdot)\rangle}{\langle\sin (n \cdot), \sin (n \cdot)\rangle}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} \overbrace{0}^{3^{3}} \frac{d V}{5^{3}} \frac{d V-x)}{\sin (n x) d x}= \\
& -\left.\frac{2}{\pi} x(\pi-x) \frac{\cos (n x)}{n}\right|_{0} ^{\pi}+\frac{2}{n \pi} \int_{0}^{\pi} \overbrace{0}^{U-2 x)} \frac{d V}{\cos (n x) d x}=\left.\frac{2}{n \pi}(\pi-2 x) \frac{\sin (n x)}{n}\right|_{0} ^{\pi^{3}}+\frac{2}{n^{2} \pi} \int_{0}^{\pi} \sin (n x) 2 d x \\
& =\left.\frac{-4}{n^{2} \pi^{0}} \frac{\cos (n x)}{n}\right|_{0} ^{\pi}=\frac{(-4)\left((-1)^{n}-1\right)}{\pi n^{3}}=\left\{\begin{array}{cl}
0 & \text { if } n=2 k \text { in even, } \\
\frac{8}{\pi(2 k+1)^{3}} & \text { if } n=2 k+1 \text { is odd. } .
\end{array}\right.
\end{aligned}
$$

Therefore the fourier sine series of f is

$$
\sum_{n=1}^{\infty} b_{n} \sin (n x)=\sum_{\substack{n=1 \\(n \text { odd })}}^{\infty} b_{n} \sin (n x)=\sum_{k=0}^{\infty} \frac{8 \sin \left(\left(2 k t_{1}\right) x\right)}{\pi(2 k+1)^{3}} \text {. }
$$

6 (b)

$$
\frac{\pi^{2}}{4}+\begin{aligned}
& y=f(x)=x(\pi-x) \\
& y=S_{5} f(x)=\frac{8}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{27}+\frac{\sin (5 x)}{125}\right)
\end{aligned}
$$

(To the resoling power of an HP-49G, the graphs of f and ${S_{5} f}$ are indistinguishable on $[0, \pi]$.)

3 (c) Yes, apparently $S_{N} f \rightarrow f$ uniformly on $[0, \pi]$ as $N \rightarrow \infty$.

$$
8 \text { (d) } \frac{\pi^{2}}{4}=f\left(\frac{\pi}{2}\right)=\sum_{k=0}^{\infty} \frac{8 \frac{(-1)^{k}((2 k+1) \pi / 2)}{\pi(2 k+1)^{3}}}{\sqrt{\sin }} \text {. so } \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3}}=\frac{\pi^{2}}{4} \cdot \frac{\pi}{8}=\frac{\pi^{3}}{32}
$$

2.(33 pts.) (a) Find a solution to $u_{t}-u_{x x}{ }^{(1)} 0$ in the strip $0<x<\pi$ and $0<t<\infty$ satisfying the boundary conditions $u(0, t) \stackrel{(2)}{=} 0$ and $u(\pi, t)^{\circ}(3)$ for $t \geq 0$ and the initial conditions $u(x, 0) \stackrel{9}{=} x(\pi-x)$ and $u_{t}(x, 0) \stackrel{(}{5}_{0}$ for $0 \leq x \leq \pi$. (Hint: You may find the results of problem 1 useful.)
(b) Is the solution to the problem in part (a) unique? Justify your answer.

20 pts.
(a) The use separation of variables. The sect nontrivial nahutions to the homogeneous pant

2 of the problem), (1)-(2)-(3)-(5), of the form $u(x, t)=X(x) T(t)$. Substituting this functional form in (1) and rearranging yields $-\frac{T^{\prime \prime}(t)}{T(t)}=-\frac{X^{\prime \prime}(x)}{X^{\prime}(x)}=$ constant $=\lambda$. also, rubstikting in (2), (3), and (5) and using the fact that u in not identically zero gives $X(0)=0=X(\pi)=T^{\prime}(0)$ Therefore we are end to the coupled actin of BV.P.'s:

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda \bar{Z}(x)=0, \quad Z(0)=0=Z(\pi) \\
T^{\prime \prime}(t)+\lambda T(t)=0, T^{\prime}(0)=0
\end{array}\right.
$$

Eigenvalue Problem
5

9
'

13 $T_{n}(t)=\cos (n t)$ (up to a constant factor). Thus $u_{n}(x, t)=Z_{n}(x) T_{n}(t)=\sin (n \times) \cos (n t)$ solver (1)-(2)-(3)-(5) for $n=1,2,3, \ldots$. By the superposition principle,

15
(*) $\quad u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin (n x) \cos (n t)$
solves (1)-(3)-(3)-(5) formally for arbitrary constants $b_{1}, b_{2}, b_{3}, \ldots$. The need to chose the constants so (*) satisfies (4); is.

$$
\begin{equation*}
x(\pi-x)=n(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin (n x) \quad \text { for all } 0 \leq x \leq \pi \tag{17}
\end{equation*}
$$

By problem 1, we should chose $b_{n}= \begin{cases}0 \quad \text { if } n=2 k \text { is even, } \\ \frac{8}{\pi(2 k+1)^{3}} & \text { if } n=2 k+1 \text { is odd. }\end{cases}$
Therefore
20

$$
u(x, t)=\sum_{k=0}^{\infty} \frac{8}{\pi(2 k+1)^{3}} \sin ((2 k+1) \times) \cos ((2 k+1) t)
$$

solves (1)-(2)-(3)-(4)-(5).
(OVER)

13 pts.
(b) Suppose there were another solution $u=v(x, t)$ to (1)-(2)-(3)-(4)-(5).

2 Therefor $w(x, t)=u(x, t)-v(x, t)$ woald solve
(1) $w_{t t}-w_{x x}=0$ if $0<x<\pi$ and $0<t<\infty$,

4

$$
\begin{equation*}
w(0, t)=0=w(\pi, t) \text { if } t \geqslant 0 \text {, } \tag{2}
\end{equation*}
$$

$$
\dot{w}(x, 0)=0=w_{t}(x, 0) \text { if } 0 \leq x \leq \pi
$$

6 Let $E(t)=\int_{0}^{\pi}\left[w_{t}^{2}(x, t)+w_{x}^{2}(x, t)\right] d x$ he the energy of the solution to (1)-(2)-(3)-(4)-(E)
Than $\frac{d E}{d t}=\frac{d}{d t} \int_{0}^{\pi}\left(w_{t}^{2}+w_{x}^{2}\right) d x=\int_{0}^{\pi} \frac{\partial}{\partial t}\left(w_{t}^{2}+w_{x}^{2}\right) d x=2 \int_{0}^{\pi}\left(w_{t} w_{t t}+w_{x} w_{x t}\right) d x$
(1) $2 \int_{0}^{\pi} \tilde{w}_{t} \frac{d r}{w_{x x} d x}+2 \int_{0}^{\pi} w_{x} w_{x t} d x=\left.2 w_{t}(x, t) w_{x}(x, t)\right|_{x=0} ^{\pi}-2 \int_{0}^{\pi} w_{x} w_{t x} d x+2 \int_{0}^{\pi} w_{x} / w_{x t} d x$

By (2)-(3), $w_{t}(\pi, t)=\lim _{k \rightarrow 0} \frac{w(\pi, t+k)-w(\pi, t)}{k}=0$ and $w_{t}(0, t)=\lim _{k \rightarrow 0} \frac{w(0, t+k)-w(0)}{k}$ $=0$. Therefore
$8 \quad \frac{d E}{d t}=2 w_{t}(\pi, t) w_{x}(\pi, t)-2 w_{t}(0, t) w_{x}(0, t)=0$
Consequently $E(t)=E(0)$ for all $t \geqslant 0$. But. $E(0)=\int_{0}^{\pi}\left(w_{t}^{2}(x, 0)+w_{x}^{2}(x, 0)\right) d x$
$10=0$ by (4)-(5). Therefore $E(t)=0$ for all $t \geqslant 0$. "By the vanishing theorem), for each $t \geqslant 0$, we have $w_{t}^{2}(x, t)+w_{x}^{2}(x, t)=0$ for all $0 \leq x \leq \pi$. Consequently $w_{t}(x, t)=0=w_{x}(x, t)$ for all ($\left.x, t\right)$ in the strip $0 \leq x \leq \pi, 0 \leq t<\infty$. At followed that $w(x, t)=$ constant in the strip. But (2), (3), or (4) implies $w(x, t)=0$
13 in the strip. That is, $u(x, t)=v(x, t)$ in the strip so the adution to 0 -(2)-(3)-(4)-(5) is unique.
3.(33 pts.) Consider the operator $T=\frac{d^{4}}{d x^{4}}$ on the space

$$
V=\left\{f \in C^{4}[0,1]: f(0)=0=f(1) \text { and } f^{\prime \prime}(0)=0=f^{\prime \prime}(1)\right\} .
$$

(a) Is T symmetric on V equipped with the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x$? Justify your answer.
(b) Are all the eigenvalues of T real? Justify your answer.
(c) Are eigenfunction of T, corresponding to distinct eigenvalues, orthogonal? Justify your answer.
(d) Are all the eigenvalues of T nonnegative? Justify your answer.

Bonus (10 pts .): Determine all the eigenvalues and eigenfunction of $T . v$

$$
\begin{aligned}
& =\left.\left(\overline{g(x)} f^{\prime \prime \prime}(x)-\overline{g^{\prime}(x)} f^{\prime \prime}(x)\right)\right|_{0} ^{1}+\int_{0}^{1}{\underset{冖}{ }}_{g^{\prime \prime}(x)}^{f^{\prime \prime}(x) d x} \underbrace{f^{\prime \prime}}_{d V}=\left.\left(\overline{g^{\prime}(x)} f^{\prime \prime \prime}(x)-\overline{g^{\prime}(x)} f^{\prime \prime}(x)+\overline{g^{\prime \prime}(x)} f^{\prime}(x)\right)\right|_{0} ^{1}-\int_{0}^{1} g^{\prime \prime \prime}(x))^{\prime} \\
& =\left.\left(\overline{g(x)} f^{\prime \prime \prime}(x)-\overline{g^{\prime}}(x) f^{\prime \prime}(x)+\overline{g^{\prime \prime}(x)} f^{\prime}(x)-\overline{g^{\prime \prime \prime}(x) f(x)}\right)\right|_{0} ^{1}+\cdots \int_{0}^{1} \overline{g^{(4)}(x)} f(x) d x .
\end{aligned}
$$

But $g(0)=0=g(1), f^{\prime \prime}(0)=0=f^{\prime \prime}(1), g^{\prime \prime}(0)=0=g^{\prime \prime}(1)$, and $f(0)=0=f(1)$ so

$$
\langle T f, g\rangle=\int_{0}^{1} \overline{g^{(t)}(x)} f(x) d x=\langle f, T g\rangle
$$

Therefore T is symmetric on V.
5 (b) Yes, by theorem 2 in the lecture notes for Sec. 5.3 , the eigenvalues of T are real.
5 (c) Yes, by Theorem 1 in the lecture notes for see. 5.3, eigenfunction o of T corresponding to distinct eigenvalues are orthogonal on $[0,1]$.
12 (d) Yes, all the eigenvalues of T are nonnegative. Jo see this we nut adapt the proof of Jharran 3 in Sec.5.3. (Theorem 3 itself does not apply directly because it is concerned with the operator $-\frac{d^{2}}{d x^{2}}$.) Let λ be an eigenvalue of $T=\frac{d^{4}}{d x^{4}}$ on V. Let f he an eigenfunction of T in V corresponding to λ. By taking the real and imaginary parts of f if necessary, we may assume that f is real-valuad. Thew

$$
\begin{aligned}
& \lambda\langle f, f\rangle=\langle\lambda f, f\rangle=\langle T f, f\rangle=\int_{0}^{1} f^{(t)}(x) \overline{f(x) d x}=\int_{0}^{1} \frac{f(x)}{f^{\prime}} \underbrace{(4)(x) d x} \\
& d v \\
& \left.f(x) f^{\prime \prime \prime}(x)\right|_{0} ^{1}-\int_{0}^{1} \underbrace{f^{\prime}(x)}_{v} \underbrace{f^{\prime \prime \prime}(x) d x}_{d v}=\left.\left(f(x) f^{\prime \prime \prime}(x)-f^{\prime}(x) f^{\prime \prime}(x)\right)\right|_{0} ^{1}+\int_{0}^{1}\left(f^{\prime \prime}(x)\right)^{2} d x
\end{aligned}
$$

But $f \in V$ so $f(1)=0=f(0)$ and $f^{\prime \prime}(1)=0=f^{\prime \prime}(0)$ so
(OVER)

$$
\lambda\langle f, f\rangle=\int_{0}^{1}\left(f^{\prime \prime}(x)\right)^{2} d x \geqslant 0 .
$$

Since $\langle f, f\rangle>0$ as well, it follows that $\lambda \geqslant 0$. (a little more thought shows that actually $\lambda>0$.)

10 Bonus: Let λ he a (necessarily positive real) umber and f a nonzero function in V such that $T f=\lambda f$. Since $\lambda>0$ we may wite $\lambda=\beta^{4}$ where $\beta>0$. Shew $f^{(4)}(x)-\beta^{4} f(x) \stackrel{\oplus}{=}$ o if $0<x<1$ and $f(0) \stackrel{(2)}{=}=\frac{(3)}{=} f(1), f^{\prime \prime}(0)=00^{(5)} f^{\prime \prime}(1)$. Sulatititing $f(x)=e^{m x}$ in (1) yields $m^{4}-\beta^{4}=0 \Rightarrow\left(m^{2}-\beta^{2}\right)\left(m^{2}+\beta^{2}\right)=0 \Rightarrow m= \pm \beta, \pm i \beta$. Therefore $f_{1}(x)=\cos (\beta x), f_{2}(x)=\sin (\beta x), f_{3}(x)=\cosh (\beta x), f_{4}(x)=\sin h(\beta x)$ forms a fundamental set of solution) of (1) since their Xrooskian is $W\left(f_{1}, f_{2}, f_{3}, f_{4}\right)(x)=4 \beta^{6} \neq 0$ for ale ned x. I.e. $f(x)=c_{1} \cos (\beta x)+c_{2} \sin (\beta x)+c_{3} \cosh (\beta x)+c_{4} \sinh (\beta x)$ is the general solution of (1) .
tote that $f^{\prime \prime}(x)=-c_{1} p^{2} \cos (\beta x)-c_{2} \beta^{2} \sin (\beta x)+\beta_{3}^{2} \cosh (\beta x)+\beta_{4}^{2} c_{4} \sin (\beta x)$. Thai

$$
\left.\begin{array}{l}
0 \stackrel{2}{=} f(0)=c_{1}+c_{3} \\
0 \stackrel{\otimes}{=} f^{\prime \prime \prime}(0)=-c_{1} \beta^{2}+c_{3} \beta^{2}=\left(-c_{1}+c_{3}\right) \beta^{2}
\end{array}\right\} \Rightarrow c_{1}=c_{3}=0 .
$$

Therefore $f(x)=c_{2} \sin (\beta x)+c_{4} \sinh (\beta x)$ so

$$
\left.\begin{array}{l}
0 \stackrel{(3)}{=} f(1)=c_{2} \sin (\beta)+c_{4} \sinh (\beta) \\
0=f^{\prime \prime}(1)=-c_{2} \beta^{2} \sin (\beta)+c_{4} \beta^{2} \sin (\beta)
\end{array}\right\} \Rightarrow \begin{gathered}
0=2 c_{2} \beta^{2} \sin (\beta) \\
\operatorname{conh}^{2} \\
0=2 c_{4} \beta^{2} \sin (\beta) .
\end{gathered}
$$

Since $\beta>0$ ard sinh $(\beta)>0$ it fellows that $c_{4}=0$. An order for f to te nonzero we must therefore have $\sin (\beta)=0$, so $\beta=\beta_{n}=n \pi \quad(n=1,2,3, \ldots)$.
$\left.\begin{array}{ll}\text { Eiganadues of Ton } V: & \lambda_{n}=\beta_{n}^{4}=n^{4} \pi^{4} \\ \text { Corresponding Eigandmuctions: } & f_{n}(x)=\sin \left(\beta_{n} x\right)=\sin (n \pi x)\end{array}\right\} n=1,2,3, \ldots$

Math 325
Exam III
Summer 2009
number taking exam: 16
standard deviation: 19.5
mean: 77.5

Distribution of Scores:
frequency

$87-100$	A
$73-86$	B
$60-72$	C (graduate), B (undergraduate)
$50-59$	C
$0-49$	F (graduate), D (undergraduate)

5
6

$$
2
$$

