Mathematics 325

Exam III Summer 2011

Note: The last page of this exam contains statements of theorems for convergence of Fourier series.

1.(33 pts.) Consider the operator
$$T = -\frac{d^4}{dx^4}$$
 on the space
 $V = \left\{ \varphi \in C^4[0,1] : \varphi'(0) = 0 = \varphi'(1) \text{ and } \varphi'''(0) = 0 = \varphi'''(1) \right\}.$

(a) Show that T is a symmetric operator on V, equipped with the usual inner product: $\langle \varphi, \psi \rangle = \int_{0}^{1} \varphi(x) \overline{\psi(x)} dx$.

- 3 (b) Are all the eigenvalues of T on V real numbers? Justify your answer.
- \mathfrak{F} (c) Are all the eigenfunctions of T on V corresponding to distinct eigenvalues orthogonal on [0,1]? Why?
- $\stackrel{\scriptstyle >}{\scriptstyle \sim}$ (d) Are all the eigenvalues of T on V nonpositive? Justify your answer.
- (e) Compute all the eigenvalues and eigenfunctions for the operator T on V. (Hint: You may find useful the fact that the general solution of $\varphi^{(4)}(x) \alpha^4 \varphi(x) = 0$ is

$$\varphi(x) = c_1 \cos(\alpha x) + c_2 \sin(\alpha x) + c_3 \cosh(\alpha x) + c_4 \sinh(\alpha x)$$
4 intervations by parts

if
$$\alpha > 0.$$
)
(a) Let f and g belong to V. Then $\langle Tf, g \rangle = \int_{0}^{\infty} f^{(0)}(\overline{g}) dx = (-f^{(0)}) \overline{g} + f^{(0)} \overline{g}^{-} - f^{(0)} \overline{g}^{-} + f \overline{g}^{(0)}), - \int_{0}^{1} f(x) \overline{g}^{(0)} dx \cdot Bt f^{(0)} = 0 = f^{(0)}, g^{(0)} = 0 = g^{(0)}, f^{(1)} = 0 = f^{(0)}, and g^{('(1))} = 0 = g^{('(0)}, so the boundary terms all evaluate to bero. Hence $\langle Tf, g \rangle = -\int_{0}^{1} f(x) \overline{g}^{(0)} dx = \langle f, Tg \rangle$
Therefore T is a symmetric operator on V.
(b) [Ves] Theorem 2 in the lecture notes for Sec. 5.3 guarantees that eigenvalues for a symmetric operator are real numbers. (2 pts.)
(c) [Ves] theorem 1 in the lecture notes for Sec. 5.3 guarantees that eigenfunctions of a symmetric operator that correspond to distinct eigenvalues are orthogonal. (2 pts.)
(d) [Ves] eigenvalues of T on V are nonpositive.] To see this suppose that λ is an eigenvalue of T on V and let φ be a nonzoro function in V such that $T\varphi = \lambda \varphi$.
Without loss of generality, we may assume that φ is real-valued. (Otherwise we may replace φ by one of the functions $Re(\varphi) = \frac{1}{2}(\varphi + \tilde{\varphi}) \in V$ or $Im(\varphi) = \frac{1}{2}(\varphi - \tilde{\varphi}) \in V$.)
Then two integrations by purts is integrationally by the second of $\varphi^{(1)} = 0 = \varphi^{(0)}$ so the boundary terms all evaluate to zero.
(The top $\varphi^{(1)} = 0 = \varphi^{(0)}$ and $\varphi^{(1)} = 0 = \varphi^{(0)}$ so the boundary terms all evaluate to zero.$

positive
Hence
$$\lambda \langle \varphi, \varphi \rangle = -\int_{0}^{1} [\varphi'(x)]^{2} dx \leq 0$$
 so $\lambda \leq 0$. There to here?
(e) According parts (b) and (d), the eigenvalues λ of TonV are real and nonpositive (1+1.
(e) According parts (b) and (d), the eigenvalues λ of TonV are real and nonpositive (1+1.
(f) $Case \lambda = 0$: Then the eigenvalue condition $T\phi = \lambda \phi$ becomes $-\phi^{(4)} = 0$ so
 $\varphi(x) = c_{0} + c_{x} + c_{x}^{2} + c_{x}^{3}$. Note that $\varphi'''(x) = 6c_{3}$ so $0 = \varphi''(0)$ implies $c_{3} = 0$.
Also $\varphi'(x) = c_{1} + 2c_{x} + 3c_{x}^{2} = c_{1} + 2c_{x}$ so $\varphi'(0) = 0 = \varphi(0)$ implies $c_{1} = c_{2} = 0$. No
constraints are placed on c_{0} however, so $\lambda = 0$ is an eigenvalue and $\varphi_{0}(x) = 1$ is a corresponding
eigenfunction of T on V .
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(192.)
(1

2.(33 pts.) (a) Show that the Fourier cosine series of the function $f(x) = x^6 - 5x^4 + 7x^2$ on the interval [0,1] is

$$\frac{31}{21} + \frac{1440}{\pi^6} \sum_{n=1}^{\infty} \frac{(-1)^n \cos(n\pi x)}{n^6}$$

(b) Write the partial sum S₂f(x) consisting of the first three terms in the Fourier cosine series of f. Sketch the graphs of f and S₂f over the interval [0,1] on the same set of coordinate axes. (To save time, raise your hand and I will come to your seat and grade your graphs from your calculator's display.)
(c) Discuss the convergence or lack thereof for the Fourier cosine series of f on [0,1]. Be sure to give

reasons for your answers for the three types of convergence: uniform, L^2 , and pointwise.

$$(1^{(1)} (4) \text{ The Faurier cosine series of } f \circ n (0, k) \text{ is } \sum_{n=0}^{\infty} a_n \cos(\frac{n\pi x}{k}) \text{ where}$$

$$a_0 = \frac{1}{k} \int_0^k f(x) Ax \text{ and } a_n = \frac{2}{k} \int_0^k f(x) \cos(\frac{n\pi x}{k}) dx \quad (n=1,2,3,...). \text{ With } f(x) = \frac{x}{x-5} + \frac{4}{7} + \frac{7}{2^2} \text{ and } k=1, \text{ we have coefficients}$$

$$a_0 = \int_0^1 (x^6 - 5x^4 + 7x^2) dx = \frac{x^7}{7} - x^5 + \frac{7}{3}x^3 \int_0^1 = \frac{1}{7} - 1 + \frac{7}{3} = \frac{3-21+49}{21} = \frac{31}{24} \text{ and }$$

$$a_0 = \int_0^1 (x^6 - 5x^4 + 7x^2) dx = \frac{x^7}{7} - x^5 + \frac{7}{3}x^3 \int_0^1 = \frac{1}{7} - 1 + \frac{7}{3} = \frac{3-21+49}{21} = \frac{31}{24} \text{ and }$$

$$a_0 = \int_0^1 (x^6 - 5x^4 + 7x^2) dx = \frac{x^7}{7} - x^5 + \frac{7}{3}x^3 \int_0^1 = \frac{1}{7} - 1 + \frac{7}{3} = \frac{3-21+49}{21} = \frac{31}{24} \text{ and }$$

$$a_0 = \int_0^1 (x^6 - 5x^4 + 7x^2) \cos(n\pi x) dx \quad \text{for } n \ge 1. \text{ Write } \phi^{(1)}(x) = \cos(n\pi x). \text{ Six integrations}$$

$$a_1 = 2\int_0^1 (x^6 - 5x^4 + 7x^2) \cos(n\pi x) dx \quad \text{for } n \ge 1. \text{ Write } \phi^{(2)}(x) = \cos(n\pi x). \text{ Six integrations}$$

$$a_1 = 2\int_0^1 (x^6 - 5x^4 + 7x^2) \cos(n\pi x) dx \quad \text{for } n \ge 1. \text{ Write } \phi^{(2)}(x) = \cos(n\pi x). \text{ Six integrations}$$

$$a_1 = 2\int_0^1 (x^6 - 5x^4 + 7x^2) \cos(n\pi x) dx = (f\phi^{(5)} - f\phi^{(4)} + f^{(4)}\phi^{(4)} - f^{(5)}\phi) \Big|_0^1 + \int_0^1 f^{(4)} \phi(x) dx.$$

$$\text{Note that } \phi^{(5)}(x) = \frac{\sin(n\pi x)}{n\pi} \text{ so } \phi^{(1)}(x) = -\phi^{(6)}(x), f^{(5)}(x) = 120x - 120x \text{ so } f^{(1)}(x) = 0 = f^{(2)}(x), \phi^{(4)}(x) = 720. \text{ Therefore }$$

$$s \phi^{(1)}(x) = 0 = \phi^{(6)}, f^{(5)}(x) = 720x \text{ so } f^{(5)}(x) = -\frac{\cos(n\pi x)}{(n\pi)^5}, \text{ and } f^{(6)}(x) = 720. \text{ Therefore }$$

$$s \phi^{(1)}(x) = 0 = \phi^{(6)}, f^{(6)}(x) dx = \frac{1440(-1)^n}{(n\pi)^6} \text{ for } n \ge 1.$$

$$a_n = 2\int_0^1 f(x) \phi^{(6)}(x) dx = \frac{1440(-1)^n}{(n\pi)^6} \text{ for } n \ge 1.$$

$$\text{Thus } f(x) \sim \left[\frac{31}{24} + \frac{1440}{\pi} \frac{\infty}{5} - \frac{(-1)\cos(n\pi x)}{n^6} \right]$$

is the Fourier cosine series representation for $f(x) = x^{6} - 5x + 7x^{2}$ on [0,1].

(b)
$$S_2^{-1}f(x) = a_0 + a_1\cos(\pi x) + a_2\cos(2\pi x) = \left[\frac{31}{21} + \frac{1440}{\pi^6}\left(-\cos(\pi x) + \frac{\cos(2\pi x)}{64}\right)\right]$$

 $y = f(x) = x^6 - 5x^4 + 7x^2$
and $y = S_2^{-1}f(x)$ (The graphs are indistinguishable on $[0,1]$ to
the vesolution of an HP-49G calculator
with window $0 \le x \le 1$ and $-1 \le y \le 4$.)

 $u_{ii} + u_{xxxx} = 0 \text{ for } 0 < x < 1, \ 0 < t < \infty,$ subject to the boundary conditions $u_x(0,t) \stackrel{\textcircled{\bullet}}{=} 0 \stackrel{\textcircled{\bullet}}{=} u_x(1,t) \text{ and } u_{xxx}(0,t) \stackrel{\textcircled{\bullet}}{=} 0 \stackrel{\textcircled{\bullet}}{=} u_{xxx}(1,t) \text{ for } t \ge 0$ and the initial conditions $u(x,0) = x^6 - 5x^4 + 7x^2$ and $u_1(x,0) = 0$ for $0 \le x \le 1$. You may use any results stated in problems 1 and 2, even if you could not successfully solve those problems. Bonus (10 pts.): Is there at most one solution to the above problem which is continuous on the strip $0 \le x \le 1, 0 \le t < \infty$? Justify your answer. We use the method of separation of variables. We seek nontrivial solutions to the homogeneous part of the above problem, $\mathbb{O} - \mathbb{O} - \mathbb{O} - \mathbb{O} - \mathbb{O}$, of the form $u(x,t) = \mathbb{X}(x)T(t)$. Substituting 244. in (1) yields X(x)T'(t) + X'(x)T(t) = 0 or $-\frac{X(x)}{X(x)} = \frac{T'(t)}{T(t)} = \text{constant} = \lambda$. Substituting in 2-3 gives S(0)T(t) = 0 = S(1)T(t) for all t 20. In order for the solution to be nontrivial we must have X'(0) = 0 = X'(1). Similarly, substituting in (P-5) leads to $X_{(0)=0=X_1}^{(3)}$ and substituting in (b) yields $T'(0) \doteq 0$. Therefore we are led to the system $X^{(4)}(x) + \lambda X(x) = 0$, X'(0) = 0 = X'(1) and $X^{(3)}(0) = 0 = X^{(3)}(1)$, (5+4 pts.) $T''(t) = \lambda T(t) \stackrel{(1)}{=} 0, T'(0) \stackrel{(1)}{=} 0.$ (s. , pls.) , ds. to here By problem 1, the eigenvalues for (8-(9-(1)-(1)-(2) are $\lambda_n = -(n\pi)^{4}$ and the corresponding 17 its to have eigenfunctions are Xn(x) = cos(nTIX) (n=0,1,2,...). Substituting in (3)-(7), we have $T''_{n}(t) + (n\pi)T_{n}(t) = 0$, $T_{n}(0) = 0$. when NZI 23 pts. to here. The general solution of (13) is $T_n(t) = a_n \cos(n^2 \pi^2 t) + b_n \sin(n^2 \pi^2 t)$ and (14) implies $b_n = 0$. Therefore $u_n(x,t) = X_n(x)T_n(t) = \cos(n\pi x)\cos(n\pi^2 t)$ for $n = 1, 2, 3, \dots$ (up to a constant factor). When n=0, the general solution of (13') is $T_0(t) = a_0 + b_0 t$ and (14') implies $b_0 = 0$. 26 pts. to here Therefore up (21, t) = 1 (up to a constant factor). The superposition principle gives $u(x,t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\pi x) \cos(n^2 \pi^2 t) \qquad (a_n's \text{ arbitrary constants for } n \ge 0)$ as a formal solution to 0-0-0-5-6. We must choose the an's so that 7 is satisfied : $x' - 5x^4 + 7x^2 = f(x) = u(x, 0) = a_0 + \sum_{n=0}^{\infty} a_n \cos(n\pi x)$ for all $0 \le x \le 1$.

3.(34 pts.) Find a solution to

18

20

25

29

By problem 2 we should choose
$$a_0 = \frac{31}{21}$$
 and $a_n = \frac{1440(-1)}{(\pi n)^6}$ for $n \ge 1$. Thus
 $u(x_7 t) = \frac{31}{21} + \frac{1440}{\pi^6} \sum_{n=1}^{\infty} \frac{(-1)\cos(n\pi x)\cos(n^2\pi^2 t)}{n^6}$
solves $(1-(2)-(3)-(4)-(5)-(6)-(7)$.

$$w_{tt} + w_{xxxx} = 0 \quad \text{for } o < x < 1, 0 < t < od,$$

$$w_{tt} + w_{xxxx} = 0 \quad \text{for } o < x < 1, 0 < t < od,$$

$$w_{x}(o, t) \stackrel{\text{lb}}{=} 0 \stackrel{\text{lb}}{=} w_{x}(1, t) \quad \text{and} \quad w_{xxx}(o, t) \stackrel{\text{lb}}{=} 0 \stackrel{\text{lb}}{=} w_{xxx}(1, t) \quad \text{for } t \ge 0$$

$$w_{x}(o, t) \stackrel{\text{lb}}{=} 0 \stackrel{\text{lb}}{=} w_{t}(x, 0) \quad \text{for } o \le x \le 1.$$

4 pts. to here. Let $E(t) = \frac{1}{2} \int_{0}^{\infty} \left[w_{t}^{2}(x_{t}t) + w_{xx}^{2}(x_{t}t) \right] dx$ be the total energy of the solution W at $t \ge 0$. Then $dE \bigoplus_{t=1}^{\infty} \int_{0}^{\infty} \left[w_{t}(x_{t}t) + w_{xx}(x_{t}t) + w_{xx}(x_{t}t) \right] dx$. Integrating by parts twice gives

$$\int_{0}^{\infty} w_{xx}(x,t) w_{xxt}(x,t) dx = \left(w_{xx} w_{xt} - w_{xxx} w_{t} \right) \left| + \int_{0}^{1} w_{t}(x,t) w_{xxxx}(x,t) dx \right|_{x=0}$$

Differentiating (b) and (17) with respect to t produces $W_{xt}(0,t) \stackrel{(b)}{=} 0 \stackrel{(7)}{=} W_{xt}(1,t)$ for $t \ge 0$. Therefore

$$\begin{pmatrix} w_{xx} w_{xt} - w_{xxx} w_{t} \end{pmatrix} = w_{xx}(i,t) w_{xt}(i,t) - w_{xxx}(i,t) w_{t}(i,t) - w_{xx}(o,t) w_{t}(o,t) + w_{xxx}(o,t) w_{t}(o,t) \\ x = 0 \end{pmatrix}$$

by (17), (9), (6), and (18). Substituting in (2) leads to

$$\frac{dE}{dt} = \int_{0}^{1} w_{t}(x_{1}t) w_{tt}(x_{1}t) dx + \int_{0}^{1} w_{t}(x_{1}t) w_{xxxx}(x_{1}t) dx$$

$$= \int_{0}^{1} w_{t}(x_{1}t) \left[w_{tt}(x_{1}t) + w_{xxxx}(x_{1}t) \right] dx = 0$$

by (15). Therefore E(t) = E(0) for all $t \ge 0$. If we differentiate (20) twice with respect to x we obtain $w_{xx}(x,0) \stackrel{(20)}{=} 0$ for all $0 \le x \le 1$. Then

8 pts. to here. $E(0) = \frac{1}{2} \int \left[w_{\pm}^{2}(x, 0) + w_{\pm}^{2}(x, 0) \right] dx = 0$

by (2) and (20). Thus, for all
$$t \ge 0$$
,
 $0 = E(t) = \int_{0}^{1} \left(\frac{1}{2} w_{t}^{2}(x,t) + \frac{1}{2} w_{xx}^{2}(x,t) \right) dx$

so the vanishing theorem implies $\lim_{z \to t^2} (x_1t) + \lim_{z \to t^2} (x_1t) = 0$ for all $0 \le x \le 1$ and all $0 \le t < \infty$, and hence $w_t(x_1t) = 0 = w_{xx}(x_1t)$. It follows that $w(x_1t) = c_1 x + c_2$ for some constants c_1 and c_2 and all $0 \le x \le 1$, $0 \le t < \infty$. But (20) implies $c_1 = 0 = c_2$. I.e. $u(x_1t) - v(x_1t) = 0$ for all $0 \le x \le 1$, $0 \le t < \infty$, proving that $u = u(x_1t)$ is the unique isolution of 0 - (2) - (3) - (5) - (6) - (7).

10 to here.

Convergence Theorems

Consider the eigenvalue problem

(1)
$$X''(x) + \lambda X(x) = 0 \text{ in } a < x < b$$

with any symmetric boundary conditions of the form

(2)
$$\begin{cases} \alpha_1 f(a) + \beta_1 f(b) + \gamma_1 f'(a) + \delta_1 f'(b) = 0\\ \alpha_2 f(a) + \beta_2 f(b) + \gamma_2 f'(a) + \delta_2 f'(b) = 0 \end{cases}$$

and let $\Phi = \{X_1, X_2, X_3, ...\}$ be the complete orthogonal set of eigenfunctions for (1)-(2). Let f be any absolutely integrable function defined on $a \le x \le b$. Consider the Fourier series for f with respect to Φ :

$$\sum_{n=1}^{\infty} A_n X_n(x)$$

where

$$A_n = \frac{\langle f, X_n \rangle}{\langle X_n, X_n \rangle} \qquad (n = 1, 2, 3, ...)$$

Theorem 2. (Uniform Convergence) If

(i) f(x), f'(x), and f''(x) exist and are continuous for $a \le x \le b$ and

(ii) f satisfies the given symmetric boundary conditions,

then the Fourier series of f converges uniformly to f on [a,b].

Theorem 3. $(L^2 - \text{Convergence})$ If

$$\int_{0}^{b} \left| f\left(x\right) \right|^{2} dx < \infty$$

then the Fourier series of f converges to f in the mean-square sense in (a,b).

Theorem 4. (Pointwise Convergence of Classical Fourier Series)

(i) If f is a continuous function on $a \le x \le b$ and f' is piecewise continuous on $a \le x \le b$, then the classical Fourier series (full, sine, or cosine) at x converges pointwise to f(x) in the open interval a < x < b.

(ii) If f is a piecewise continuous function on $a \le x \le b$ and f' is piecewise continuous on $a \le x \le b$, then the classical Fourier series (full, sine, or cosine) converges pointwise at every point x in $(-\infty, \infty)$. The sum of the Fourier series is

$$\sum_{n=1}^{\infty} A_n X_n(x) = \frac{f(x^+) + f(x^-)}{2}$$

for all x in the open interval (a,b).

Theorem 4 ∞ . If f is a function of period 2*l* on the real line for which f and f' are piecewise continuous, then the classical full Fourier series converges to $\frac{f(x^+) + f(x^-)}{2}$ for every real x.

$$n = 24$$

 $\mu = 72.3$
 $\sigma = 19.8$

Range	Graduate Letter Grade	Undergraduate Letter Grade	Frequency
87-100	A	A	7
73 - 86	B	B	6
60-72	C	В	4
50-59	С	С	4
0 - 49	F	\mathcal{D}	3