Note: The last page of this exam contains statements of theorems for convergence of Fourier series.
1.(33 pts.) Consider the operator $T=-\frac{d^{4}}{d x^{4}}$ on the space

$$
V=\left\{\varphi \in C^{4}[0,1]: \varphi^{\prime}(0)=0=\varphi^{\prime}(1) \text { and } \varphi^{\prime \prime \prime}(0)=0=\varphi^{\prime \prime \prime}(1)\right\}
$$

(a) Show that T is a symmetric operator on V, equipped with the usual inner product: $\langle\varphi, \psi\rangle=\int_{0}^{1} \varphi(x) \overline{\psi(x)} d x$.

3 (b) Are all the eigenvalues of T on V real numbers? Justify your answer.
(c) Are all the eigenfunction s of T on V corresponding to distinct eigenvalues orthogonal on $[0,1]$? Why?
(d) Are all the eigenvalues of T on V nonpositive? Justify your answer.

11 (e) Compute all the eigenvalues and eigenfunction for the operator T on V. (Hint: You may find useful the fact that the general solution of $\varphi^{(4)}(x)-\alpha^{4} \varphi(x)=0$ is

$$
\varphi(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)+c_{3} \cosh (\alpha x)+c_{4} \sinh (\alpha x)
$$

if $\alpha>0$.)
4 integrations by parts
8 (a) Let f and g belong to V. Then $\langle T f, g\rangle=\int_{0}^{1}-f^{(4)}(x) g(x) d x \stackrel{\downarrow}{=}\left(-f^{(3)} g+f^{(x)} g^{\prime}-f^{\prime} g^{\prime \prime}+f g^{\prime \prime \prime}\right)$, $-\int_{0}^{1} f(x) g^{(4)}(x) d x$. But $f^{(3)}(1)=0=f^{(3)}(1), g^{\prime}(0)=0=g^{\prime}(1), f^{\prime}(1)=0=f^{\prime}(0)$, and $g^{\prime \prime \prime}(1)=0=g^{\prime \prime \prime}(0$:
so the boundary terms all evaluate to zero. Hence $\langle T f, g\rangle=-\int_{0}^{1} f(x) \overline{g^{(6)}(x)} d x=\langle f, T g\rangle$ Therefore T is a symmetric operator on V.
3 (b) Yes, Theorem 2 in the lecture notes for Sec. 5.3 guarantees that eigenvalues for a symmetric operator are real numbers.
3 (c) Yes: Theorem 1 in the lecture notes for Sec. 5.3 guarantees that eigenfunction of a symmetric operator that correspond to distinct eigenvalues are orthogonal. (2pts.)
8 (d) Yes, eigenvalues of T on V are non positive. To see this suppose that λ is an eigenvalue of T on V and let φ be a nonzero function in V such that $T \varphi=\lambda \varphi$. Without loss of generality, we may assume that φ is real-valued. (otherwise we may replace φ by one of the functions $\operatorname{Re}(\varphi)=\frac{1}{2}(\varphi+\bar{\varphi}) \in V$ or $\operatorname{Im}(\varphi)=\frac{1}{2 i}(\varphi-\bar{\varphi}) \in V$.) Then two integrations by parts

But $\varphi^{(3)}(1)=0=\varphi^{(3)}(0)$ and $\varphi^{\prime}(1)=0=\varphi^{\prime}(0)$ so the boundary terms all evaluate to zero.

Hence $\lambda \overbrace{\langle\varphi, \varphi\rangle}^{\text {positive }}=-\int_{0}^{1}\left[\varphi^{\prime \prime}(x)\right]^{2} d x \leq 0$ so $\lambda \leq 0$.
(e) According ${ }^{\text {to }}$ parts (b) and (d), the eigenvalues λ of Ton V are real and nonpositive.

Case $\lambda=0$: Then the eigenvalue condition $T \varphi=\lambda \varphi$ becomes $-\varphi^{(4)}=0$ so $\varphi(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$. Note that $\varphi^{\prime \prime \prime}(x)=6 c_{3}$ so $0=\varphi^{\prime \prime \prime}(0)$ implies $c_{3}=0$. Also $\varphi^{\prime}(x)=c_{1}+2 c_{2} x+3 c_{3}^{3} x^{2}=c_{1}+2 c_{2} x$ so $\varphi^{\prime}(0)=0=\varphi^{\prime}(1)$ implies $c_{1}=c_{2}=0$. No constraints are placed on c_{0} however, so $\lambda=0$ is an eigenvalue and $\varphi_{0}(x)=1$ is a corresponding eigenfunction of T on V.
Case $\lambda<0$, say $\lambda=-\alpha^{4}$ where $\alpha>0$: The eigenvalue condition $T \varphi=\lambda \phi$ becomes $\varphi^{(4)}-\alpha^{4} \varphi=0$ The general solution of this differential equation is $\varphi(x)=c_{1} \cos (\alpha x)+c \operatorname{cin}(\alpha x)+c_{3} \cosh (\alpha x)+c_{4} \sinh (\alpha x)$. Observe that $\varphi_{3}^{\prime}(x)=-\alpha c \sin (\alpha x)+\alpha c_{2} \cos (\alpha x)+\alpha c_{3} \sinh (\alpha x)+\alpha c_{4} \cosh (\alpha x)$ and $\varphi^{\prime \prime \prime}(x)=\alpha^{3} c_{1} \sin (\alpha x)$ $-\alpha^{3} c_{2} \cos (\alpha x)+\alpha^{3} c_{3} \sinh (\alpha x)+\alpha^{3} c_{4} \cosh (\alpha x)$. Since $\varphi \in V_{,} \varphi^{\prime}(1)=0=\varphi^{\prime}(0)$ and $\varphi^{\prime \prime \prime}(1)=0=\varphi^{\prime \prime \prime}(0)$. Then $0=\varphi^{\prime \prime \prime}(0)=-\alpha^{3} c_{2}+\alpha^{3} c_{4}$ and $0=\phi^{\prime}(0)=\alpha c_{2}+\alpha c_{4}$, and it follows that $c_{2}=0^{2}=c_{4}$.
Then $0=\varphi^{\prime \prime \prime}(1)=\alpha^{3} c_{1} \sin (\alpha)+\alpha_{3}^{3} c_{3} \sinh (\alpha)$ and $0=\varphi^{\prime}(1)=-\alpha c_{1} \sin (\alpha)+\alpha c_{3} \sinh (\alpha)$, or equivalently, $0=c_{1} \sin (\alpha)+c_{3} \sinh (\alpha)$ and $0=-c_{1} \sin (\alpha)+c_{3} \sinh (\alpha)$. Adding equations yields $2 e_{3} \sinh (\alpha)=0$ so $c_{3}=0$. Substituting then leads to $0=e_{1} \sin (\alpha)$. For nontrivial solutions to exist we must have $\sin (\alpha)=0$ and consequently $\alpha=n \pi \quad(n=1,2,3$, , Therefore the negative eigenvalues of T on V are $\lambda_{n}=-(n \pi)^{4}$ and the corresponding eigenfunction are $\varphi_{n}(x)=\cos (n \pi x)$ where $n=1,2,3, \ldots$
2.(33 pts.) (a) Show that the Fourier cosine series of the function $f(x)=x^{6}-5 x^{4}+7 x^{2}$ on the interval $[0,1]$ is

$$
\frac{31}{21}+\frac{1440}{\pi^{6}} \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos (n \pi x)}{n^{6}}
$$

(b) Write the partial sum $S_{2} f(x)$ consisting of the first three terms in the Fourier cosine series of f.

Sketch the graphs of f and $S_{2} f$ over the interval $[0,1]$ on the same set of coordinate axes. (To save time, raise your hand and I will come to your seat and grade your graphs from your calculator's display.) (c) Discuss the convergence or lack thereof for the Fourier cosine series of f on $[0,1]$. Be sure to give reasons for your answers for the three types of convergence: uniform, L^{2}, and pointwise.
(a) The Fourier cosine series of f on $(0, l)$ is $\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi x}{\ell}\right)$ where

$$
a_{0}=\frac{1}{l} \int_{0}^{l} f(x) d x \text { and } a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x \quad(n=1,2,3, \ldots) \text {. With } f(x)=x^{6}-5 x^{4}+7 x^{2}
$$

and $l=1$, we have coefficients
3pts.to here. $a_{0}=\int_{0}^{1}\left(x^{6}-5 x^{4}+7 x^{2}\right) d x=\frac{x^{7}}{7}-x^{5}+\left.\frac{7}{3} x^{3}\right|_{0} ^{1}=\frac{1}{7}-1+\frac{7}{3}=\frac{3-21+49}{21}=\frac{31}{21}$ and 5 heir $a_{n}=2 \int_{0}^{1}\left(x^{6}-5 x^{4}+7 x^{2}\right) \cos (n \pi x) d x$ for $n \geq 1$. Write $\phi^{(6)}(x)=\cos (n \pi x)$. Six integrations by parts gives $\int_{0}^{1} f(x) \varphi^{(6)}(x) d x=\left.\left(f \varphi^{(5)}-f^{\prime} \varphi^{(4)}+f^{\prime \prime} \varphi^{(3)}-f^{(3)} \varphi^{\prime \prime}+f^{(4)} \phi^{\prime}-f^{(5)} \varphi\right)\right|_{0} ^{1}+\int_{0}^{1} f^{(6)}(x) \varphi(x) d x$.
Note that $\varphi^{(5)}(x)=\frac{\sin (n \pi x)}{n \pi}$ so $\varphi^{(5)}(1)=0=\varphi^{(5)}(0), f^{\prime}(x)=6 x^{5}-20 x^{3}+14 x$ so $f^{\prime}(1)=0=f^{\prime}(0)$,

$$
\varphi^{(3)}(x)=\frac{-\sin (n \pi x)}{(n \pi)^{3}} \text { so } \varphi^{(3)}(1)=0=\varphi^{(3)}(0), f^{(3)}(x)=120 x^{3}-120 x \text { so } f^{(3)}(1)=0=f^{(3)}(0), \varphi^{\prime}(x)=\frac{\sin (n \pi x)}{(n \pi)^{5}}
$$

so $\varphi^{\prime}(1)=0=\varphi^{\prime}(0), f^{(5)}(x)=720 x$ so $f^{(5)}(0)=0, \varphi(x)=\frac{-\cos (n \pi x)}{(n \pi)^{6}}$, and $f^{(6)}(x)=720$. Therefore 13 $=-\frac{720}{(n \pi)^{6}} \int_{0}^{1} \cos (n \pi x) d x=0$. Consequently,

$$
a_{n}=2 \int_{0}^{1} f(x) \varphi^{(6)}(x) d x=\frac{1440(-1)^{n}}{(n \pi)^{6}} \text { for } n \geq 1
$$

Thus

$$
f(x) \sim \frac{31}{21}+\frac{1440}{\pi^{6}} \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos (n \pi x)}{n^{6}}
$$

is the Fourier cosine series representation for $f(x)=x^{6}-5 x^{4}+7 x^{2}$ on $[0,1]$.
(b) $\quad S_{2} f(x)=a_{0}+a_{1} \cos (\pi x)+a_{2} \cos (2 \pi x)=\frac{31}{21}+\frac{1440}{\pi^{6}}\left(-\cos (\pi x)+\frac{\cos (2 \pi x)}{64}\right)$.

$$
y=f(x)=x^{6}-5 x^{4}+7 x^{2}
$$

and $y=S_{2} f(x)$ (The graphs are indistinguishable on $[0,1]$ to the resolution of an HP-49G calculator with window $0 \leq x \leq 1$ and $-1 \leq y \leq 4$.)
(c) Note that $\Phi=\{\cos (n \pi x)\}_{n=0}^{\infty}$ is the complete orthogonal set of eigenfunctions for the eigenvalue problem $\mathbb{X}^{\prime \prime}(x)+\lambda \mathbb{Z}(x)=0$ with symmetric (Neumaxn) boundary conditions $Z^{\prime}(0)=0$ and $\Sigma^{\prime}(1)=0$. Also $f(x)=x^{6}-5 x^{4}+7 x^{2}, f^{\prime}(x)=6 x^{5}-20 x^{3}+14 x$, and $f^{\prime \prime}(x)=30 x^{4}-60 x^{2}+14$ are continuous on $[0,1]$ and f satisfies the symmetric boundary conditions that generate $\Phi: f^{\prime}(0)=0$ and $f^{\prime}(1)=0$. Then the uniform convergence result (Theorem 2) guarantees that the Fourier cosine series of f converges uniformly to f on $[0,1]$. Because uniform convergence (on bounded intervals, at least) implies L^{2} convergence and pointwise convergence, the Fourier cosine series of f converges to f in the L^{2} sense and the pointwise sense on $[0,1]$.
3.(34 pts.) Find a solution to

$$
u_{t}+u_{\mathrm{xux}} \stackrel{(1)}{=} 0 \text { for } 0<x<1,0<t<\infty,
$$

subject to the boundary conditions

$$
u_{x}(0, t) \stackrel{(2)}{=} 0 \stackrel{(3)}{=} u_{x}(1, t) \text { and } u_{x x}(0, t) \stackrel{(4)}{=} \stackrel{(5)}{=} u_{x x x}(1, t) \text { for } t \geq 0
$$

and the initial conditions

$$
u(x, 0) \stackrel{\ominus}{=} x^{6}-5 x^{4}+7 x^{2} \text { and } u_{i}(x, 0) \stackrel{\ominus_{0}^{(Q}}{=} \text { for } 0 \leq x \leq 1
$$

You may use any results stated in problems 1 and 2 , even if you could not successfully solve those problems.
Bonus (10 pts.): Is there at most one solution to the above problem which is continuous on the strip $0 \leq x \leq 1,0 \leq t<\infty$? Justify your answer.

We use the method of separation of variables. We seek nontrivial solutions to the homogeneous part of the above problem, (1)-(2)-(3)-(4)-(5)-(4), of the form $u(x, t)=\overline{(4)}(x) T(t)$. Substituting in (1) yields $Z_{(x)} T^{\prime \prime}(t)+Z^{(4)}(x) T(t)=0$ or $\frac{-\frac{X^{(4)}(x)}{Z(x)}}{Z}=\frac{T^{\prime \prime}(t)}{T(t)}=$ constant $=\lambda$. Subbsituding in (2)-(3) gives $\nabla^{\prime}\left(0, T(t)=0=\nabla^{\prime}(1) T(t)\right.$ for all $t \geq 0$. In order for the solution to be nontrivial we must have $\Psi^{\prime}(0)=0=Z^{\prime}(1)$. Similarly, substituting in (4)-(5) leads to $X_{(0)}^{(3)}=0=8_{1}^{(8)}$ and substituting in (6) yields $T^{\prime}(0) \doteq 0$. Therefore we are led to the system

$$
\begin{aligned}
& X^{(4)}(x)+\lambda \Psi(x) \stackrel{(8)}{=} 0, X^{\prime}(0) \stackrel{(9)}{=} 0 \stackrel{(10)}{=} X^{\prime}(1) \text { and } X^{(3)}(0) \stackrel{(1)}{=} \stackrel{(2)}{=} \mathbb{Z}^{(3)}(1), \\
& T^{\prime \prime}(t)-\lambda T(t) \stackrel{(®)}{=} 0, \quad T^{\prime}(0) \stackrel{(4)}{=} 0 .
\end{aligned}
$$

By problem 1, the eigenvalues for (8)-(9)-(10)-(11)-(22) are $\lambda_{n}=-(n \pi)^{4}$ and the corresponding eigenfunction are $X_{n}(x)=\cos (n \pi x)(n=0,1,2, \ldots)$. Substituting in (13) - (14), we have

$$
T_{n}^{\prime \prime}(t)+(n \pi)_{n}^{4}(t) \stackrel{(13)}{=} 0, T_{n}^{\prime}(0) \stackrel{(19)}{=} 0 .
$$

The general solution of (13) is $T_{n}(t)=a_{n} \cos \left(n^{2} \pi^{2} t\right)+b_{n} \sin \left(n^{2} \pi^{2} t\right)$ when $n \geq 1$ and $(14)^{\prime}$ implies $b_{n}=0$.
Therefore $u_{n}(x, t)=\Psi_{n}(x) T_{n}(t)=\cos (n \pi x) \cos \left(n^{2} \pi^{2} t\right)$ for $n=1,2,3, \ldots$ (up to a constant factor). When $n=0$, the general solution of (13^{\prime}) is $T_{0}(t)=a_{0}+b_{0} t$ and (14) implies $b_{0}=0$. Therefore $u_{0}(x, t)=1$ (up to a constant factor). The superposition principle gives

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \cos \left(n^{2} \pi^{2} t\right) \quad \text { (an ss arbitrary constants for } n \geqslant 0 \text {) }
$$

as a formal solution to (1)-(2)-(3)-(4)-(5)-(6). We must choose the $a_{n}^{\prime} s$ so that (7) is satisfied:

$$
x^{6}-5 x^{4}+7 x^{2}=f(x)=n(x, 0)=a_{0}+\sum^{\infty} a_{n} \cos (n \pi x) \quad \text { for all } 0 \leq x \leq 1 \text {. }
$$

By problem 2 we should choose $a_{0}=\frac{31}{21}$ and $a_{n}=\frac{1440(-1)}{(\pi n)^{6}}$ for $n \geqslant 1$. Thus

$$
u(x, t)=\frac{31}{21}+\frac{1440}{\pi^{6}} \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos (n \pi x) \cos \left(n^{2} \pi^{2} t\right)}{n^{6}}
$$

solves (1)-(2)-(3)-(4)-(5)-(b)-(7).
Bonus: The solution above is the unique solution (1)-(2)-(3)-(4)-(5)-(6)-(7). To see this, suppose that $u=v(x, t)$ were another solution to (1)-(2)-(3) -(4) -(5) -(6)-(7) that is
1 pt to here Continuous for $0 \leq x \leq 1$ and $t \geqslant 0$. Consider $w(x, t)=u(x, t)-v(x, t)$. Then w is continuous on $0 \leq x \leq 1,0 \leq t<\infty$, and solves the problem

2 pts, to here

$$
\left\{\begin{array}{l}
w_{t t}+w_{x x x x} \stackrel{(15)}{=} 0 \text { for } 0<x<1,0<t<\infty, \\
w_{x}(0, t) \stackrel{(16)}{=} 0 \stackrel{(19)}{=} w_{x}(1, t) \text { and } w_{x \times x}(0, t) \stackrel{(18)}{=} 0 \stackrel{(9)}{=} w_{x<x}(1, t) \text { for } t \geqslant 0, \\
w(x, 0) \stackrel{(20)}{=} 0 \stackrel{(21)}{=} w_{t}(x, 0) \text { for } 0 \leq x \leq 1 .
\end{array}\right.
$$

4 pts. tonne. Let $E(t)=\frac{1}{2} \int_{0}^{1}\left[W_{t}^{2}(x, t)+W_{x x}^{2}(x, t)\right] d x$ be the total energy of the solution w at $t \geqslant 0$.
Then $\frac{d E}{d t} \xlongequal[=]{(22)} \int_{0}^{1}\left[w_{i}(x, t) w_{t t}(x, t)+w_{x x}(x, t) w_{x x t}(x, t)\right] d x$. Integrating by parts twice gives

$$
\int_{0}^{1} w_{x x}(x, t) w_{x x t}(x, t) d x=\left.\left(w_{x x} w_{x t}-w_{x x x} w_{t}\right)\right|_{x=0} ^{1}+\int_{0}^{1} w_{t}(x, t) w_{x x x x}(x, t) d x
$$

Differentiating (16) and (17) with respect to t produces $w_{x t}(0, t) \stackrel{(16)}{=} 0 \stackrel{(17)}{=} w_{x t}(1, t)$ for $t \geqslant 0$. Therefore

$$
\begin{aligned}
\left.\left(w_{x x} w_{x t}-w_{x x x} w_{t}\right)\right|_{x=0} ^{1} & =w_{x x}(1, t) w_{x t}(1, t)-w_{x x x}(1, t) w_{t}(1, t)-w_{x x}(0, t) w_{x t}(0, t)+w_{x x x}(0, t) w_{t}(0, t) \\
& =0
\end{aligned}
$$

by (17), (19), (16), and (18). Substituting in (22) leads to

6 pts. to here.

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{0}^{1} w_{t}(x, t) w_{t t}(x, t) d x+\int_{0}^{1} w_{t}(x, t) w_{x x x x}(x, t) d x \\
& =\int_{0}^{1} w_{t}(x, t)\left[w_{t t}(x, t)+w_{x x x x}(x, t)\right] d x=0
\end{aligned}
$$

by (15). Therefore $E(t)=E(0)$ for all $t \geqslant 0$. If we differentiate (20) twice with respect to x we obtain $w_{x x}(x, 0) \stackrel{20^{\circ}}{=} 0$ for all $0 \leq x \leq 1$. Then
8 pts. to here.

$$
E(0)=\frac{1}{2} \int_{0}^{1}\left[w_{t}^{2}(x, 0)+w_{x x}^{2}(x, 0)\right] d x=0
$$

by (21) and (20). Thus, for all $t \geqslant 0$,

$$
0=E(t)=\int_{0}^{1}\left[\frac{1}{2} w_{t}^{2}(x, t)+\frac{1}{2} w_{x x}^{2}(x, t)\right] d x
$$

so the vanishing theorem implies $\frac{1}{2} w_{t}^{2}(x, t)+\frac{1}{2} w_{x x}^{2}(x, t)=0$ for all $0 \leqslant x \leqslant 1$ and all $0 \leqslant t<\infty$, and hence $w_{t}(x, t)=0=w_{x x}(x, t)$. It follows that $w(x, t)=c_{1} x+c_{2}$ for some constants c_{1} and c_{2} and all $0 \leq x \leq 1,0 \leq t<\infty$. But 20 implies $c_{1}=0=c_{2}$. I.e. $u(x, t)-v(x, t)=0$ for all $0 \leq x \leq 1,0 \leq t<\infty$, proving that $u=u(x, t)$ is the uniquer solusical of (1)-(2)-(3)-(4)-(5)-(6)-(7).

Convergence Theorems

Consider the eigenvalue problem

$$
\begin{equation*}
X^{\prime \prime}(x)+\lambda X(x)=0 \text { in } a<x<b \tag{1}
\end{equation*}
$$

with any symmetric boundary conditions of the form

$$
\left\{\begin{array}{l}
\alpha_{1} f(a)+\beta_{1} f(b)+\gamma_{1} f^{\prime}(a)+\delta_{1} f^{\prime}(b)=0 \tag{2}\\
\alpha_{2} f(a)+\beta_{2} f(b)+\gamma_{2} f^{\prime}(a)+\delta_{2} f^{\prime}(b)=0
\end{array}\right.
$$

and let $\Phi=\left\{X_{1}, X_{2}, X_{3}, \ldots\right\}$ be the complete orthogonal set of eigenfunctions for (1)-(2). Let f be any absolutely integrable function defined on $a \leq x \leq b$. Consider the Fourier series for f with respect to Φ :

$$
\sum_{n=1} A_{n} X_{n}(x)
$$

where

$$
A_{n}=\frac{\left\langle f, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle} \quad(n=1,2,3, \ldots) .
$$

Theorem 2. (Uniform Convergence) If
(i) $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ exist and are continuous for $a \leq x \leq b$ and
(ii) f satisfies the given symmetric boundary conditions,
then the Fourier series of f converges uniformly to f on $[a, b]$.
Theorem 3. (L^{2}-Convergence) If

$$
\int^{b}|f(x)|^{2} d x<\infty
$$

then the Fourier series of f converges to f in the mean-square sense in (a, b).
Theorem 4. (Pointwise Convergence of Classical Fourier Series)
(i) If f is a continuous function on $a \leq x \leq b$ and f^{\prime} is piecewise continuous on $a \leq x \leq b$, then the classical Fourier series (full, sine, or cosine) at x converges pointwise to $f(x)$ in the open interval $a<x<b$.
(ii) If f is a piecewise continuous function on $a \leq x \leq b$ and f^{\prime} is piecewise continuous on $a \leq x \leq b$, then the classical Fourier series (full, sine, or cosine) converges pointwise at every point x in $(-\infty, \infty)$. The sum of the Fourier series is

$$
\sum_{n=1}^{\infty} A_{n} X_{n}(x)=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}
$$

for all x in the open interval (a, b).
Theorem 4∞. If f is a function of period $2 l$ on the real line for which f and f^{\prime} are piecewise continuous, then the classical full Fourier series converges to $\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}$ for every real x.

Math 325
Exam III
Summer 2011

$$
\begin{aligned}
& n=24 \\
& \mu=72.3 \\
& \sigma=19.8
\end{aligned}
$$

Range	Graduate Letter Grade	Undergraduate Letter Grade		
Frequency				

