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ABSTRACT
Potential, potential field and potential-field gradient data are supplemental to each
other for resolving sources of interest in both exploration and solid Earth studies. We
propose flexible high-accuracy practical techniques to perform 3D and 2D integral
transformations from potential field components to potential and from potential-field
gradient components to potential field components in the space domain using cubic
B-splines. The spline techniques are applicable to either uniform or non-uniform rect-
angular grids for the 3D case, and applicable to either regular or irregular grids for
the 2D case. The spline-based indefinite integrations can be computed at any point in
the computational domain. In our synthetic 3D gravity and magnetic transformation
examples, we show that the spline techniques are substantially more accurate than
the Fourier transform techniques, and demonstrate that harmonicity is confirmed
substantially better for the spline method than the Fourier transform method and
that spline-based integration and differentiation are invertible. The cost of the in-
crease in accuracy is an increase in computing time. Our real data examples of 3D
transformations show that the spline-based results agree substantially better or bet-
ter with the observed data than do the Fourier-based results. The spline techniques
would therefore be very useful for data quality control through comparisons of the
computed and observed components. If certain desired components of the potential
field or gradient data are not measured, they can be obtained using the spline-based
transformations as alternatives to the Fourier transform techniques.

Key words: Integral transformations, Cubic B-splines, Gravity, Magnetic, Gravity
gradients

INTRODUCTION

The vertical components of the gravity acceleration field and
the total-field magnetic data are traditionally measured and
the potential-field gradients are increasingly observed for a
wide scope of studies in exploration (Nabighian et al. 2005a,
b). Horizontal derivatives are used for detecting edges of
source bodies (Blakely and Simpson 1986; Grauch and Cordell
1987). Both horizontal and vertical derivatives are needed

∗E-mail: bingzhuw@gmail.com

for determining the lateral location and depth of single or
multiple simple sources with Euler deconvolution (Thompson
1982; Reid et al. 1990; Ravat 1996; Nabighian and Hansen
2001; Hansen and Suciu 2002; Ravat et al. 2002; FitzGerald,
Reid and McInerney 2004), the 2D analytic signal (Nabighian
1972, 1974) and the 3D total gradient techniques.

Gravity, magnetic field and gradient data are also applied
to solid Earth studies, such as crustal structure (Behrendt,
Meister and Henderson 1966; Thomas, Grieve and Sharpton
1988; Allen and Hinze 1992; Bosum et al. 1997; Cochran
et al. 1999; Berrino, Corrado and Riccardi 2008), the
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lithosphere (Martinez, Goodliffe and Taylor 2001; Hebert
et al 2001; Jallouli, Mickus and Turki 2002; Abers et al.

2002; Fischer 2002), continental rift studies (Martinez et al

2001; Abers et al. 2002; Mickus et al. 2007), impact structure
(Ravat et al. 2002), geothermal models (Bektaş et al. 2007;
Purucker et al. 2007), seismicity (Kostoglodov et al. 1996),
bathymetry (Wang 2000) and volcanic island studies (Carbó
et al. 2003; Blanco-Montenegro et al. 2005).

Potential, Potential Field (PF) and Potential-field Gradient
(PG) data are supplemental to each other for resolving sources.
Transformations facilitate data comparison and provide more
means for interpretation by transforming the measured data
into other forms of data. The fast Fourier transform (FT) is
used widely in potential-field geophysics (e.g. Blakely 1996;
Sandwell and Smith 1997; Mickus and Hinojosa 2001; Carbó
et al. 2003). In theory, the Fourier transform techniques could
be applied to perform potential-field transformations. How-
ever, the results of the Fourier transform techniques are often
less accurate than one might like, and the Fourier transform
techniques are only applied to regular grid points (e.g., Ricard
and Blakely 1988; Wang 2006).

High-accuracy spline-based techniques of 3D and 2D
potential-field upward continuation (Wang 2006) and poten-
tial field and gradient component transformations and deriva-
tive computations (Wang, Krebes and Ravat 2008) have been
developed. In this paper, we propose flexible high-accuracy
techniques to perform 3D and 2D integral transformations
from PF components to potential and from PG components
to PF components in the space domain with cubic B-splines.
Using synthetic 3D gravity and magnetic transformation ex-
amples, we find that the spline techniques are substantially
more accurate than the Fourier transform techniques, and
demonstrate that harmonicity is confirmed substantially bet-
ter for the spline method than the Fourier transform method
and that spline-based integration and differentiation are in-
vertible. Real data examples of 3D transformations show
that the spline-based results agree substantially better (from
gravity-gradient components to gravity) or better (between
gravity-gradient components) with the observed data than do
the Fourier-based results. For synthetic or real-data examples,
relative root mean square errors between the computed values
and the corresponding exact or observed values are taken to
measure the accuracy.

POTENTIAL , POTENTIAL F IELD AND
POTENTIAL-F IELD GRADIENT

Let U(x, y, z) be the potential, f(x, y, z) be the potential field,
and D(x, y, z) be the potential-field gradient tensor. For con-

venience, we use a uniform notation with U(x, y, z) and its
derivatives in this paper.

A potential field component equals to the corresponding
partial derivative of the potential:

fi (x, y, z) = Ui (x, y, z) = ∂U
∂i

, i = x, y, z. (1)

Analogously, a potential-field gradient component equals to
the corresponding second-order partial derivative of the po-
tential:

Di j (x, y, z) = fi j (x, y, z) = ∂ fi

∂ j
= Ui j (x, y, z) = ∂2U

∂i∂ j
,

i, j = x, y, z. (2)

Any potential field f(x, y, z) is conservative and curl free, i.e.
∇ × f(x, y, z) = 0, so that

Uji (x, y, z) = Ui j (x, y, z), i, j = x, y, z, i �= j . (3)

In the region outside the sources any potential field f(x, y, z)
is divergence free, i.e. ∇ · f(x, y, z) = 0. Therefore Laplace’s
equation holds

Uzz(x, y, z) = −[Uxx(x, y, z) + Uyy(x, y, z)]. (4)

Considering equations (3) and (4), for the 3D case only five
(e.g., Uxx,Uxy,Uxz,Uyy,Uyz) of the nine components of the
gradient tensor D(x, y, z) are independent. Analogously, for
the 2D case only two (e.g., Uxx,Uxz) of the four components
of the gradient tensor D(x, z) are independent.

CALCULATING HORIZONTAL INDEFINITE
INTEGRALS W ITH C UBIC B-SPL INES

The 2D case

Approximate V(x) = Uxk, k = x, z or V(x) = Ux with
splines, satisfying conditions (A7) and (A8). The interpola-
tion coefficients {Ci} can be determined (Appendix A). We
then have

∫
V(x)dx =

N+1∑
i=−1

Ci N−1
i (x), (5)

where N−1
i (x) is given by equation (A3) in Appendix A.

The 3D case

Approximate V(x, y) = Uxk, k = x, y, z or V(x, y) = Ux with
splines, satisfying conditions (B3) through (B6). The interpo-
lation coefficients {Ci, j} can be determined (Appendix B). We
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then have

∫
V(x, y)dx =

Nx+1∑
i=−1

Ny+1∑
j=−1

N−1
i (x)Ci, j Nj (y). (6)

Similarly, approximating V(x, y) = Uyk, k = x, y, z or
V(x, y) = Uy with splines, satisfying conditions (B3) through
(B6). We then have

∫
V(x, y)dy =

Nx+1∑
i=−1

Ny+1∑
j=−1

Ni (x)Ci, j N−1
j (y), (7)

where Ni (x), N−1
i (x) are given by equation (A3) in Appendix

A, and Nj (y), N−1
j (y) are similarly obtained for subscript j .

TRANSFORMATIONS FROM PF
COMPONENTS T O POTENTIAL

2D transformations from Ux to U
Let V(x) be Ux(x) and use equation (5) to obtain U(x).

3D transformations from Ux or Uy to U
Let V(x, y) be Ux(x, y) or Uy(x, y) and use equation (6) or (7)
to obtain U(x, y).

TRANSFORMATIONS FROM PG
COMPONENTS T O PF C OMPONENTS

2D transformations from Uxx to (Ux, Uz)
Let V(x) be Uxx(x) and use equation (5) to obtain Ux(x).
Knowing Ux(x), calculate Uz(ξ ) (Wang et al. 2008) from

Uz(ξ ) = 1
π

∫ ∞

−∞

Ux(x)
ξ − x

dx. (8)

2D transformations from Uxz to (Ux, Uz)
Let V(x) be Uxz(x) and use equations (5) to obtain Uz(x).
Knowing Uz(x), Ux(ξ ) can be calculated (Wang et al. 2008)
from

Ux(ξ ) = − 1
π

∫ ∞

−∞

Uz(x)
ξ − x

dx. (9)

3D transformations from Uxy to (Ux, Uy, Uz)
Consider equations (6) and (7). Let V(x, y) be Uxy(x, y), then
Ux(x, y) and Uy(x, y) can be calculated. Knowing Ux(x, y) and
Uy(x, y), calculate Uz(ξ, η) (Wang et al. 2008) from

Uz(ξ, η) = 1
2π

∫ ∞

−∞

∫ ∞

−∞

(ξ − x)Ux(x, y) + (η − y)Uy(x, y)

[(x − ξ )2 + (y − η)2]
3/2

dxdy.

(10)

3D transformations from Uxz or Uyz to (Ux, Uy, Uz)
Let V(x, y) be Uxz(x, y) or Uyz(x, y) and use equation (6) or
(7) to obtain Uz(x, y). Knowing Uz(ξ, η), calculate Ux(ξ, η) and
Uy(ξ, η) (Wang et al. 2008) from

Ux(ξ, η) = − 1
2π

∫ ∞

−∞

∫ ∞

−∞

(ξ − x)Uz(x, y)
[(x − ξ )2 + (y − η)2]3/2

dxdy, (11)

Uy(ξ, η) = − 1
2π

∫ ∞

−∞

∫ ∞

−∞

(η − y)Uz(x, y)
[(x − ξ )2 + (y − η)2]3/2

dxdy. (12)

3D transformations from (Uxx, Uyy) to (Ux, Uy, Uz)
Let V(x, y) be Uxx(x, y) and use equation (6) to obtain
Ux(x, y). Let V(x, y) be Uyy(x, y) and use equation (7) to ob-
tain Uy(x, y). Knowing Ux(x, y) and Uy(x, y), compute Uz(ξ, η)
using equation (10).

EVALUATION OF INFINITE INTEGRALS
AND D OUBLE INTEGRALS

Equations (8 and 9) are similar infinite integral relations.
When the computational domain D1 = {x|a ≤ x ≤ b} is well
beyond the lateral extent of all sources of interest, approxi-
mate each infinite integral with a definite integral and evaluate
it using the spline technique. To avoid a singularity, the sam-
pling point (ξ ) must not coincide with a spline knot (x). The
centre of each interval of the spline grid is an ideal location
for a sampling point. For a given point (ξ ), approximate the
whole of the integrand in equation (8), e.g., with splines, the
interpolation coefficients {Ci} can be determined (Appendix
A). Thus, we have

Uz(ξ ) = 1
π

N+1∑
i=−1

Ci (ξ )[N−1
i (b) − N−1

i (a)], (13)

where N−1
i (·) is given by equation (A3) in Appendix A.

Equations (10 and 12) are similar infinite double in-
tegral relations. When the computational domain D2 =
{(x, y)| a ≤ x ≤ b, c ≤ y ≤ d } is well beyond the lateral extent
of all sources of interest, approximate each infinite double in-
tegral with a definite double integral and evaluate it using the
spline technique. To avoid a singularity, the sampling point
(ξ, η) must not coincide with a spline knot (x, y). The centre
of each rectangular unit of the spline grid is an ideal location
for a sampling point. For a given point (ξ, η), approximate the
whole of the integrand in equation (10), e.g., with splines, the
interpolation coefficients {Ci, j} can be determined (Appendix
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B). Thus, we have

Uz(ξ, η) = 1
2π

Nx+1∑
i=−1

Ny+1∑
j=−1

[N−1
i (b) − N−1

i (a)]Ci, j (ξ, η)

× [N−1
j (d) − N−1

j (c)], (14)

where N−1
i (·) is given by equation (A3) in Appendix A, and

N−1
j (·) is similarly obtained for subscript j .

SY NTHETIC EX A MPL ES

3D gravity example of Uz obtained from noisy Uxz with the
spline technique and comparison with the Fourier transform
technique
In equation (6), let V(x, y) = Uxz, calculate Uz. The 3D sources
are four solid spheres with densities and geometrical parame-
ters listed in Table 1. Figure 1 shows the effectiveness of com-
puting Uz from Uxz in the noisy situation. Figure 1(f) shows
the Uxz data contaminated by random noise with a zero mean
and a standard deviation of 0.65 mGal/km. Figure 1a shows
the exact theoretical Uz map. The Uz map obtained using the
spline technique is shown in Fig. 1(b). In order to improve
the performance of both the spline technique and the Fourier
transform technique, expand the original grids with 32 data
points on each side of the computational domain and taper
the expanded parts, but just keep the computed Uz values
on the original grids. The Uz map obtained using the spline
technique from the expanded Uxz data is shown in Fig. 1(c).
The Uz map obtained using the Fourier transform technique is
shown in Fig. 1(d). Fig. 1(e) shows the Uz map obtained using
the Fourier transform technique from the expanded Uxz data.

In order to measure the difference between the computed
values Vci and the corresponding exact or observed values Vti ,
define the RE (relative root mean square error) as

RE =

√
1
N

N∑
i=1

(Vci − Vti )2

(Vti )max − (Vti )min
. (15)

Table 1 Source parameters of the four solid spheres in Fig. 1.
The centre of a sphere is at (x0, y0, z0). The radius of the
sphere is a and its density is ρ

Sphere x0(km) y0(km) z0(km) a(km) ρ(kg/.m3)

1 0.0 0.0 6.0 3.8 1200
2 10.0 0.0 1.6 1.5 1500
3 −5.0 8.7 1.6 1.5 1500
4 −5.0 −8.7 1.6 1.5 1500

Compared with Fig. 1(b), Fig. 1(d) is significantly less accu-
rate. Compared with Fig. 1(c), Fig. 1(e) is significantly less
accurate and based on Fig. 1(e) one can hardly identify the
large source located at the centre. So, the results computed
with the spline technique agree substantially better with the
exact data than do the results computed with the Fourier
transform technique. This statement is verified by comparing
the REs shown in Table 2.

The pertinent computation times of this example with a
2.80 GHz laptop computer for different grid sizes and differ-
ent methods are listed in Table 3. The extra time overhead of
the spline method is the penalty for its increased accuracy.

Let the grid dimension be N, and the computation time be
Y. For the spline method, Y(N)=C1(N)N2.9. For the Fourier
transform method, Y(N)=C2(N)N2 log10N. The boundedness
of C1(N) and C2(N) (Table 3) suggests the polynomial O(N2.9)
growth for the spline method and the usual O(N2 log10N)
growth for the Fourier transform method.

3D example of magnetic potential computed from a noisy
x-component of magnetic induction with the spline technique
and comparison with the Fourier transform technique

The 3D source is a solid sphere, whose magnetic and geometri-
cal parameters are the following: inclination, declination and
intensity of magnetization of the sphere are 60 degree, 20 de-
gree and 1 A/m, respectively; the centre of the sphere is at (0,
0, 1.2 km) and the radius of the sphere is 0.5 km. Analytical
magnetic potential (Um) and x-component of magnetic induc-
tion (Bx) can be calculated (Blakely 1996). Um = − 1

μ0

∫
Bxdx

where μ0 is permeability of free space. In equation (6), let
V(x,y) = Bx(x,y) and calculate Um. Figure 2 shows the ef-
fectiveness of computing Um from Bx in the noisy situation.
The Bx data contaminated by random noise with a zero mean
and a standard deviation of 0.5 nT are shown in Fig. 2(f).
Figure 2(a) shows the exact theoretical Um map. The Um map
obtained using the spline technique is shown in Fig. 2(b). In
order to improve the performance of both the spline technique
and the Fourier transform technique, expand the original grids
with 32 data points on each side of the computational domain
and taper the expanded parts, but only keep the computed
Um values on the original grids. The Um map obtained us-
ing the spline technique from the expanded Bx data is shown
in Fig. 2(c). Figure 2(d) shows the Um map obtained using
the Fourier transform technique. The Um map obtained us-
ing the Fourier transform technique from the expanded Bx

data is shown in Fig. 2(e). Compared with Fig. 2(b), Fig. 2(d)
is significantly less accurate. So is Fig. 2(e), compared with
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Figure 1 The 3D gravity example of Uz obtained from noisy Uxz data using the spline technique and the Fourier transform technique. The
sources are four solid spheres with densities and geometrical parameters listed in Table 1. Data spacing is 0.5 km in both the x and y directions.
(a) Uz (analytical). (b) Uz from Uxz (spline). (c) Uz from expanded Uxz(spline). (d) Uz from Uxz (FT). (e) Uz from expanded Uxz (FT). (f) Noisy
Uxz (contaminated by random noise with a zero mean and a standard deviation of 0.65 mGal/km).

Fig. 2(c). Therefore, the results computed with the spline tech-
nique agree substantially better with the exact data than do
the results computed with the Fourier transform technique.
The REs shown in Table 4 strongly support this statement.

3D gravity example of Uxz obtained from
rectangular-gridded Uzz with the spline technique

This is a 3D gravity example of Uxz recovered from exact and
noisy rectangular-gridded Uzz data using the spline technique

Table 2 REs between panels I, I = (b), (c),
(d), (e) and panel (a) in Fig. 1

Panel (b) (c) (d) (e)

RE (%)9 8.72 7.29 19.13 10.29

(Wang et al. 2008). The 3D sources are five solid spheres with
densities and geometrical parameters listed in Table 5. The
data spacing is 0.15 km in the x direction and 0.10 km in the
y direction. Figure 3(d) shows the exact theoretical Uzz data.
The Uxz map obtained using the spline technique from the
exact Uzz data is shown in Fig. 3(b). Figure 3(e) shows the Uzz

data contaminated by random noise with a zero mean and a
standard deviation of 0.41 mGal/km. The Uxz map obtained
using the spline technique from the noisy Uzz data is shown in
Fig. 3(c). Compared with the exact Uxz (Fig. 3a), the REs are
0.37% and 0.62% for the exact and noisy cases in Fig. 3(b,
c), respectively.

R E A L D A T A E X A M P L E S

The real data are the free air gravity and full tensor grav-
ity gradient dataset (Uz and Uxx, Uxy, Uxz, Uyy, Uyz, Uzz)
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Table 3 Time complexity of the spline and Fourier transform methods

N (N×N grid) tspline (second) tFT (second) tspline (N2.9) tFT (N2log10N)

64 0.656 0.031 3.79e-06 4.19e-06
128 4.672 0.141 3.62e-06 4.08e-06
256 36.55 0.563 3.79e-06 3.57e-06

collected in the Gulf of Mexico. The dataset satisfies equa-
tion (4) (Laplace’s equation) well. Using the spline-based tech-
niques, the following transformations are performed.

3D gravity-gradient component transformations

Examples of these are shown in Fig. 4. The computed Uzz re-
covered from the observed Uxz and Uyz (Fig. 5b) data using the

spline technique (Wang et al. 2008) and the Fourier transform
technique are shown in Fig. 4(b) and 4(c), respectively. Com-
pared with the observed Uzz data (Fig. 4a), the RE is 6.89%
for the spline technique and 14.86% for the Fourier transform
technique.

Figures 4(e,f) show the computed Uxz recovered from
the observed Uzz data using the spline technique and the
Fourier transform technique, respectively. Compared with the

Figure 2 The 3D magnetic example of Um obtained from noisy Bx data using the spline technique and the Fourier transform technique. The
source is a solid sphere centered at (0, 0, 1.2 km) with a radius of 0.5 km. Data spacing is 0.1 km in both the x and y directions. (a) Um(analytical).
(b) Um from Bx (spline). (c) Um from expanded Bx (spline). (d) Um from Bx (FT). (e) Um from expanded Bx (FT). (f) Noisy Bx (contaminated by
random noise with a zero mean and a standard deviation of 0.5 nT).
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Table 4 REs between panels I, I = (b), (c),
(d), (e) and panel (a) in Fig. 2

Panel (b) (c) (d) (e)

RE (%) 1.43 1.37 17.34 10.23

Table 5 Source parameters of the five solid spheres in Figs. 3,
6, 7, 8 and 9. The centre of a sphere is at (x0, y0, z0). The
radius of the sphere is a, and its density is ρ

Sphere x0(km) y0(km) z0(km) a(km) ρ(kg/.m3)

1 0.0 0.0 1.72 1.56 1000
2 1.2 1.2 0.6 0.5 1000
3 −1.5 1.5 0.6 0.5 1000
4 −1.2 −1.2 0.6 0.5 1000
5 1.5 −1.5 0.6 0.5 1000

observed Uxz data (Fig. 4d), the RE is 10.45% for the spline
technique and 10.57% for the Fourier transform technique.

The computed Uxy recovered from the observed Uxz data
with the spline technique and the Fourier transform technique
are shown in Figs. 4(h, i), respectively. Compared with the
observed Uxy data (Fig. 4g), the RE is 9.41% for the spline
technique and 12.40% for the Fourier transform technique.

The results computed with the spline technique agree better
with the observed data than do the results computed with the
Fourier transform technique, although the differences in this
example are not as pronounced as in other cases, e.g., between
Figs. 2(c) and 2(e), or Figs. 5(g) and 5(h).

3D gravity Uz obtained from gravity-gradient components
Uxz and Uyz

An example is shown in Fig. 5. Figure 5(b) shows the ob-
served Uyz data. The observed Uxz data are shown in Fig. 4(d).

Figure 3 The 3D gravity example of Uxz obtained from exact and noisy rectangular-gridded Uzz data using the spline technique. The sources
are five solid spheres with densities and geometrical parameters listed in Table 5. Data spacing is 0.15 km in the x direction and 0.10 km in
the y direction. (a) Uxz (analytical). (b) Uxz from exact Uzz. (c) Uxz from noisy Uzz. (d) Uzz (analytical). (e) Noisy Uzz (contaminated by random
noise with a zero mean and a standard deviation of 0.41 mGal/km).
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Figure 4 Real 3D examples of gravity-gradient component transformations. The data were collected in the Gulf of Mexico with data spacing
of 0.5 km in both the x and y directions. (a) Uzz(observed). (b) Uzz from observed Uxz and Uyz (spline). (c) Uzz from observed Uxz and Uyz (FT).
(d) Uxz (observed). See the observed Uyz data in Fig. 5(b). (e) Uxz from observed Uzz (spline). (f) Uxz from observed Uzz (FT). (g) Uxy (observed).
(h) Uxy from observed Uxz (spline). (i) Uxy from observed Uxz (FT).

In equation (6), let V(x,y)=Uxz and calculate gravity Uz. In
equation (7), let V(x,y) = Uyz and calculate Uz again. Figures
5(c, d) are the computed Uz obtained from Uyz with the spline
technique and the Fourier transform technique, respectively.
Figures 5(e, f) are the computed Uz obtained from Uxz with
the spline technique and the Fourier transform technique, re-
spectively. Figure 5(g) shows the computed Uz with the spline
technique averaged from panels (c) and (e). The computed Uz

with the Fourier transform technique averaged from panels
(d) and (f) is shown in Fig. 5(h). Compared with the observed
Uz data (Fig. 5a), the REs are: (c) 15.07%, (d) 63.51%, (e)
23.25%, (f) 79.27%, (g) 12.01%, (h) 65.34%.

Apparently, the results computed with the spline technique
agree substantially better with the observed Uz data than do
the results computed with the Fourier transform technique.

HARMONICITY A N D IN V ER T I B I L I T Y
T E S T S

Harmonicity test using computed Uxx, Uyy and analytical Uzz

This is a 3D gravity example of harmonicity confirmation for
the spline technique. The sources are five solid spheres with

densities and geometrical parameters listed in Table 5. Data
spacing is 0.05 km in both the x and y directions. There are
three steps:

(I) compute potential U from the forwarded potential field
Ux; compute the first-order partial derivative Ũx from the
potential U; then compute the second-order partial derivative
Uxx from the Ũx.

(II) compute potential U from the forwarded potential field
Uy; compute the first-order partial derivative Ũy from the po-
tential U; then compute the second-order partial derivative
Uyy from the Ũy.

(III) sum up the exact theoretical Uzz and the Uxx and Uyy

calculated in (I) and (II).
Define the norm of an array of values Vi :

Norm = 1
N

√√√√ N∑
i=1

(Vi )2. (16)

Steps (I), (II) and (III) apply to both the spline technique
and the Fourier transform technique. Figures 6(a) and 6(d)
are analytical Uxx and Uyy, respectively. The spline-based Uxx

(Fig. 6b) and Uyy (Fig. 6e) agree substantially better with the
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Figure 5 Real 3D example of gravity Uz obtained from gravity-gradient components Uxz and Uyz. The data were collected in the Gulf of Mexico
with data spacing of 0.5 km in both the x and y directions. (a) Uz (observed). (b) Uyz (observed). The observed Uxz data are in Fig. 4(d). (c) Uz

from Uyz (spline). (d) Uz from Uyz (FT). (e) Uz from Uxz (spline). (f) Uz from Uxz (FT). (g) Uz (spline), averaged from panels (c) and (e). (h) Uz

(FT), averaged from panels (d) and (f).

analytical results than do the Fourier transform-based Uxx

(Fig. 6c) and Uyy (Fig. 6f).
The sum of Figs. 6(a), 6(d) and 6(g) (analytical Uzz), the

exact theoretical second-order derivatives, is exactly zero ev-
erywhere, perfectly satisfying Laplace’s equation. The sum
of Figs. 6(b), 6(e) and 6(g), shown in Fig. 6(h) (Norm 0.002
mGal/km), is nearly zero, almost perfectly satisfying Laplace’s
equation, which confirms harmonicity for the spline tech-

nique. The Uxx and Uyy are so accurately calculated with
the spline technique, Uzz can be reliably obtained using the
Laplace’s equation (equation 4). Interestingly, one can iden-
tify the four shallow sources shown as distinct anomalies on
Fig. 6(h).

The sum of Figs. 6(c), 6(f) and 6(g), shown in Fig. 6(i) (norm
0.302 mGal/km), is not nearly as close to zero as the sum in
Fig. 6(h). i.e., harmonicity is substantially less well confirmed
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Figure 6 3D gravity example of harmonicity confirmation for the spline technique and comparison with the Fourier transform technique. Uxx and
Uyy are computed, Uzz is analytical. The sources are five solid spheres with densities and geometrical parameters listed in Table 5. Data spacing is
0.05 km in both the x and y directions. (a) Uxx (analytical). (b) Uxx (spline). (c) Uxx (FT). (d) Uyy (analytical). (e) Uyy (spline). (f) Uyy (FT). (g)
Uzz (analytical). (h) Uxx(spline) + Uyy(spline) + Uzz(analytical). (i) Uxx(FT) + Uyy(FT) + Uzz(analytical).

for the Fourier transform method than the spline method. Both
methods have some edge effects. However, the edge problem
is significantly less severe for the spline technique than the
Fourier transform technique.

Harmonicity tests using computed Uxx, Uyy, Uzz

These are further harmonicity tests for the spline technique
and the Fourier transform technique. The sources are five solid
spheres with densities and geometrical parameters listed in
Table 5. Data spacing is 0.1 km in both the x and y directions.
The following describes the procedure.

(I) Compute potential U from the forwarded potential field
Ux; compute the first-order partial derivative Ũx from the
potential U; then compute the second-order partial derivative
Uxx from the Ũx.

(II) Compute potential U from the forwarded potential field
Uy; compute the first-order partial derivative Ũy from the po-
tential U; then compute the second-order partial derivative
Uyy from the Ũy.

(III) It takes the following steps to compute Uzz: Compute
Uxy from the Ũx obtained in (I), and compute Uyx from the Ũy

obtained in (II); compute Uxz from Uxy and Uxx obtained in
(I); compute Uyz from Uyx and Uyy obtained in (II); compute
Uzz from Uxz and Uyz.

(IV) Sum up the Uxx, Uyy and Uzz calculated in (I), (II) and
(III).

(I), (II), (III) and (IV) apply to both the spline technique and
the Fourier transform technique. Figures 7(h, i) are the Uxy

maps computed with the spline technique and the Fourier
transform technique, respectively. Both are very close to

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–16
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Figure 7 Intermediate steps of computing Uzz (Fig. 8): 3D gravity example to compare the spline technique and the Fourier transform technique
for computing Uxz, Uyz, Uxy. The sources are five solid spheres with densities and geometrical parameters listed in Table 5. Data spacing is 0.1
km in both the x and y directions. (a) Uxz (analytical). (b) Uxz (spline). (c) Uxz (FT). (d) Uyz (analytical). (e) Uyz (spline). (f) Uyz (FT). (g) Uxy

(analytical). (h) Uxy (spline). (i) Uxy (FT).

analytical Uxy as shown in Fig. 7(g). However, comparing
with analytical Uxz (Fig. 7a) and Uyz (Fig. 7d), the spline-based
Uxz (Fig. 7b) and Uyz (Fig. 7e) are obviously substantially bet-
ter than the Fourier transform-based Uxz (Fig. 7c) and Uyz

(Fig. 7f). Figures 8(a, b) are the Uzz maps and Figures 8(d,
e) are the Uxx + Uyy + Uzz maps obtained using the spline
technique and the Fourier transform technique, respectively.

(V) There is another alternative way to compute Uzz us-
ing the Fourier transform technique: compute Uz from the U
obtained in (I); then compute Uzz from Uz. Figure 8f is the
Fourier transform-based Uxx + Uyy + Uzz map, where Uzz

(Fig. 8c) is the Uzz map computed through the alternative
way using the Fourier transform technique. Apparently, this
alternative approach is impractical to compute Uzz using the
Fourier transform technique.

The norms (equation 16) for Figs. 8(d, e, f) are 0.144,
0.507, 165.232 mGal/km, respectively. i.e., harmonicity is
again substantially less well confirmed for the Fourier trans-
form method than the spline method.

Invertibility test

This is a 3D gravity example to test the invertibility of spline-
based integration and differentiation. The sources are five
solid spheres with densities and geometrical parameters listed
in Table 5. Data spacing is 0.1 km in both the x and y direc-
tions. Figure 9(d) shows the exact theoretical Ux data. The U
map obtained from the exact Ux data using the spline-based
integration is shown in Fig. 9(b); compared with the exact
U (Fig. 9a), the RE is 5.99%. Figure 9(c) shows the Ux map
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Figure 8 3D gravity example to test harmonicity of the spline technique and comparison with the FT technique, Uxx(Fig. 6), Uyy(Fig. 6), Uzz

are all computed. The sources are five solid spheres with densities and geometrical parameters listed in Table 5. Data spacing is 0.1 km in both
the x and y directions. (a) Uzz (spline). (b) Uzz (FT). (c) Uzz (alternative FT). (d) Uxx + Uyy+Uzz (spline). (e) Uxx + Uyy + Uzz (FT; Uzz panel
b). (f) Uxx + Uyy + Uzz (FT; Uzz panel c).

Figure 9. 3D gravity example to test whether spline-based integration and differentiation are invertible. The sources are five solid spheres with
densities and geometrical parameters listed in Table 5. Data spacing is 0.1 km in both the x and y directions. (a) U (analytical). (b) U obtained
from analytical Ux using spline-based integration. (c) Ux obtained from U in panel (b) using spline-based differentiation. (d) Ux (analytical).

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–16



Spline-based potential-field integral transformations 13

obtained from the U as shown in Fig. 9(b) using the spline-
based differentiation; compared with the exact Ux(Fig. 9d),
the RE is only 0.01%.

We have obtained the potential from the field and recovered
the field from the computed potential nicely, so that spline-
based integration and differentiation are invertible.

CONCLUSIONS

Potential, potential field and potential-field gradient data are
supplemental to each other for resolving sources of inter-
est. We advanced spline-based techniques for 3D and 2D
potential-field upward continuation and potential field and
gradient component transformations and derivative computa-
tions in the previous studies. In this paper, we propose flexible
high-accuracy practical techniques to perform 3D and 2D in-
tegral transformations from PF components to potential and
from PG components to PF components in the space domain
using cubic B-splines. The spline techniques are applicable to
either uniform or non-uniform rectangular grids for the 3D
case, and applicable to either regular or irregular grids for the
2D case. The spline-based indefinite integrations can be com-
puted at any point in the computational domain, as can the
horizontal derivatives.

In our synthetic 3D gravity examples (Uz obtained from
noisy Uxz, Uxz obtained from rectangular-gridded Uzz, and
the demonstration that harmonicity is confirmed substantially
better for the spline technique than the Fourier transform tech-
nique and spline-based integration and differentiation are in-
vertible) and magnetic examples (Um obtained from noisy Bx),
we have shown that the spline techniques are substantially
more accurate and hence may provide better insights into
understanding the sources than the Fourier transform tech-
niques, and Uzz can be reliably obtained using the Laplace’s
equation since the Uxx and Uyy are very accurately calculated
with the spline technique. The cost of the increase in accuracy
is some increase in computing time compared to the Fourier
transform technique. However, the speed is still fast, e.g., the
spline-based computation of Uz from Uxz on a 128 by 128
grid was performed within 5 seconds with a 2.80 GHz laptop
computer. For the 3D gravity Uz obtained from Uxz example,
the complexities of the computational time growth are poly-
nomial O(N2.9) growth for the spline method and the usual
O(N2 log10N) growth for the Fourier transform method.

Our real data examples of 3D transformations show that the
spline-based results agree substantially better (from gravity-
gradient components to gravity) or better (between gravity-

gradient components) with the observed data than do the
Fourier-based results.

The spline techniques would therefore be very useful for
data quality control through comparisons of the computed
and observed components. If certain desired components of
the potential field or gradient data are not measured, they can
be obtained using the spline-based transformations as alter-
natives to the Fourier transform techniques.
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APPENDIX A: UNIVARIATE CUBIC
B-SPL INE INTERPOLATION

In the domain D1 = {x|a ≤ x ≤ b}, make a partition

x−3 < x−2 < x−1 < x0 = a < x1 < . . . < xN = b <

xN+1 < xN+2 < xN+3.

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–16



Spline-based potential-field integral transformations 15

The univariate cubic B-splines, whose interior knots are
{ xi , i = 0, 1, . . . , N }, can then be expressed as

S(x) =
N+1∑
i=−1

Ci Ni (x), (A1)

where Ci are interpolation coefficients. The unified formula
for interpolation, differentiation and integration is

Su(x) =
N+1∑
i=−1

Ci Nu
i (x), (A2)

where

Nu
i (x) = (xi+2 − xi−2)Bu

i (x), (A3)

and

Bu
i (x) = 3!

(3 − u)!

i+2∑
k=i−2

(−1)uWk(xk − x)3−u
+ , (A4)

Wk =
i+2∏

m=i−2
m�=k

1
xk − xm

, (A5)

(xk − x)3−u
+ =

{
(xk − x)3−u, f or x ≤ xk

0, f or x > xk

. (A6)

The u in equation (A2) has the following meaning: when u is a
positive integer, calculate the uth-order derivative; when u is a
negative integer, calculate the |u|th-order integral; when u =
0, do not calculate either derivative or integral, i.e. N0

i (x) =
Ni (x).

V(x) is a function defined in the domain D1.
{ V(i), i = 0, 1, . . . , N } are known values of V(x) at the in-
terior knots. Use the univariate cubic B-splines (A1) to ap-
proximate V(x) while satisfying the following conditions

S(xi ) = V(i), i = 0, 1, . . . , N, (A7)

∂S(x)
∂x

= ∂V(x)
∂x

, at x0, xN. (A8)

Substituting equation (A2) into equations (A7) and (A8), us-
ing a difference quotient to replace ∂V(x)

∂x , and considering the
localized nonzero characteristics of the cubic B-splines

Ni (xk) = 0, f or |i − k| > 1, (A9)

yields

YC = V. (A10)

where the dimensions are Y(N + 3, N + 3), C(N + 3, 1) and
V(N + 3, 1).

From equation (A10) one obtains

C = Y−1V. (A11)

i.e., the interpolation coefficients are determined.

APPENDIX B: B IVARIATE CUBIC B-SPL INE
INTERPOLATION

In the domain D2 = {(x, y)| a ≤ x ≤ b, c ≤ y ≤ d }, make a
partition

x−3 < x−2 < x−1 < x0 = a < x1 < . . . < xNx = b

< xNx+1 < xNx+2 < xNx+3.

y−3 < y−2 < y−1 < y0 = c < y1 < . . . < yNy = d

< yNy+1 < yNy+2 < yNy+3

The bivariate cubic B-splines, whose interior knots are
{ (xi , yj ), i = 0, 1, . . . , Nx , j = 0, 1, . . . , Ny }, can be ex-
pressed as

S(x, y) =
Nx+1∑
i=−1

Ny+1∑
j=−1

Ni (x)Ci, j Nj (y), (B1)

where Ci, j are interpolation coefficients. The unified formula
for interpolation, differentiation and integration is

Su,v(x, y) =
Nx+1∑
i=−1

Ny+1∑
j=−1

Nu
i (x)Ci, j Nv

j (y), (B2)

where Nu
i (x) is shown in equation (A3), and Nv

j (y) is similarly
obtained for subscript j.

V(x, y) is a function defined in the domain D2.
{ V(i, j), i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny } are known val-
ues of V(x, y) at the interior knots. Use the bivariate cubic
B-splines (B1) to approximate V(x, y) while satisfying the fol-
lowing conditions

S(xi , yj ) = V(i, j), i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny,
(B3)

∂S(x, y)
∂x

= ∂V(x, y)
∂x

, at (x0, yj ), (xNx, yj ),

j = 0, 1, . . . , Ny,

(B4)

∂S(x, y)
∂y

= ∂V(x, y)
∂y

, at (xi , y0), (xi , yNy),

i = 0, 1, . . . , Nx,

(B5)

∂2S(x, y)
∂x∂y

= ∂2V(x, y)
∂x∂y

, at (x0, y0), (x0, yNy), (xNx, y0),

(xNx, yNy). (B6)
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Substituting equation (B2) into equation (B3–B6), using dif-
ference quotients to replace ∂V(x,y)

∂x , ∂V(x,y)
∂y and ∂2V(x,y)

∂x∂y , and
considering the localized nonzero characteristics of the cubic
B-splines (A9), yields

XCY = V. (B7)

where the dimensions are X(Nx + 3, Nx + 3), C(Nx +
3, Ny + 3), Y(Ny + 3, Ny + 3) and V(Nx + 3, Ny + 3).

From equation (B7) one obtains

C = X−1VY−1
. (B8)

i.e., the interpolation coefficients are determined. Because of
the localized feature of the cubic B-splines, a large matrix is
decomposed into two much smaller matrixes. The computa-
tions are fast.
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