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An Unexpected Maximum
in a Family of Rectangles

LEON M. HALL
ROBERT P. ROE

University of Missouri-Rolla
Rolla, MO 65409-0249

Introduction The genesis for this paper was Problem 749 from the Macalester
College problem-of-the-week series:

MACALESTER PROBLEM 749. Given a square A} A, A3 A, and a point P inside the
square. The lengths of PA,, PA,, and PA, are 4, 3, and V10, respectively. What is the
length of PA,?

The reader is encouraged to try to solve the problem now, before proceeding. In
our solution to this problem we realized that A; A, A; A, need not be a square. This
observation led to the study of families of rectangles that satisfy hypotheses like those
of Problem 749, and ultimately to this paper.

A quick solution to Problem 749 is provided by Theorem 1, which is a special case
of Feuerbach’s Relation (see [4] or [6]).

THEOREM 1. If P is any point in the plane of rectangle A, Ay A3 Ay, and if a, is the
distance from P to A,, then L{_,(—1)'a? = 0.

A Ay

a,

ay

as

FIGURE 1
a%+a§=a§+ai.

Thus, an ordered triple of distances from a point P to three consecutive vertices of
a rectangle uniquely determines the distance from P to the fourth vertex, but does
not uniquely determine the rectangle. For instance, let a,, ay, a3, and a, be given
with ©7_,(—1)'a? = 0. If vertex A, of the rectangle is fixed at the origin and P is on
the circle I' with center A, and radius a,, then vertices A, and A, will be on the
x- and y-axes, respectively, and vertex A, will be determined by the positions of A,
and A;. As P moves around I, the rectangle changes. See Ficure 2.

We used The Geometer’s Sketchpad to explore various properties of the rectangles.
The software allowed us to keep «a,, a,, a5, and a, fixed while moving the point P
around the circle I', thus showing how the rectangles change. A natural question
arises: When is the area of the rectangle an extremum? Although the perimeter is not
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FIGURE 2
Two rectangles with the same a;’s.

constant, a reasonable-sounding guess was that the extrema occur when the rectangle
is a square. Alas, experiments using the area computation feature of The Geometer’s
Sketchpad indicated that this guess was incorrect. We solve the area-optimization
problem in the last section.

Another natural question is to describe the locus of A, under the construction
given above. The “trace locus” feature of The Geometer’s Sketchpad shows, when a,
is the smallest distance, that this locus is a closed curve that resembles a guitar pick.
See Ficure 3. If a, is not less than both a; and a,, then the rectangle does not exist
for P on certain arcs of the circle I', and the locus of A, will be a disconnected curve.
In the next section we discuss the equations for the locus of A,.

Yy

X

FIGURE 3
A “guitar pick’ traced by vertex A,.

In our search of the literature we discovered that problems related to Problem 749
have a long history. For example, an old problem in geometry is to construct a
specified kind of triangle when the distances from a point in the plane of the triangle
to its vertices are given. Geometry problem 151 in the June-July 1901 American
Mathematical Monthly [3] gave the distances from a point to three corners of a
square, which is equivalent to specifying a right isosceles triangle. Baker [1] says the
problem in [3] is a variation of Rutherford’s problem, in which the triangle is
equilateral. When the triangle is equilateral and the distances are 3, 4, and 5,
Rabinowitz [5] and Gregorac [2] call the problem the 3-4-5 puzzle. Many other
references may be found in [5]. Walter [7] considers distances of 3, 4, and 5 to three
consecutive vertices of a rectangle. Several generalizations have been studied, such as
letting the distances be a, b, and ¢ ([3], [5], [7]), allowing the point from which the
distances are measured to be above (or below) the plane of the triangle ([7]), replacing
the triangle by a polygon ([5]), and replacing the triangle by a simplex in R" with
n + 1 vertices ([2]).

The locus of A, Let a,,a,, a;, and a, be fixed, with Z}_,(—1)'a? = 0. Relabel the
points and distances, if necessary, so that a, is the minimum of the distances with A,
fixed at the origin. Let the coordinates of A; be (x,0), and the coordinates of A, be
(0, y). Since P is on the circle T, which has radius a,, the coordinates of P are
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(aycos0, a,sin@), where 6 is the angle measured from the positive x-axis to A, P.
Since Aj; is on the circle with center P and radius as,

(x — aycos 6)° + (aysin 0)° = a?.

One solution to this quadratic in x is

x=x(0) =aycos 0+ y/a3 —asin’6 . (1)

Similarly, since A, is on the circle with center P and radius a,, we get

y =y(0) =aysin 0+ /a} — a cos’6 . (2)

These are parametric equations for the locus of A,, with parameter 6 in [0,27).
Taking the positive sign in front of the radicals guarantees that the rectangle will be in
the first quadrant.

However, equations (1) and (2) are only one of four pairs of parametric equations
for the locus of A,. The other three are determined by using the negative square root
in one or both equations. The four curves are given by

m+n

x=aycos(0) +(—1)

mn* n+1

y=a,sin(6) +(—1)

a3 — a3sin®*(9)
m,n=1,2.
a? — a3cos*(0)

More possibilities arise if we do not require a, to be the minimum distance. Again,
there are four cases: (a) a, < a, and a, <a,, (b) a, <a, and a, > a,, (¢) a, > a; and
ay < as, (d) ay > a, and a, > a,. In cases (b), (c), and (d), each of the curves C,,, is
disconnected. For example, in case (b) the curve C;; is given by equations (1) and (2).
The quantity under the radical in (1) is negative for two 6-intervals, 6, < 6 < 6,, and
6, < 6 < 6,. Further, x(0,) = —x(6,) and x(6,) = —x(8;). Thus the curve “jumps”
to the second quadrant when 6= 6, and “jumps back” to the first quadrant when
6 = 6,. Similar behavior occurs in case (¢) with (2), and in case (d) with both (1) and
(2). Ficure 4 shows all sixteen possible curves C,,, for cases (a)-(d), with the plot
styles for the curves as shown in Ficure 4a.
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FIGURE 4
a;€(13,15, 18},
(a) a, <ayand a, <a; (b)ay,>a;and ay<a;
() ay<ayand ay>a; (d)ay,>a;and ay>a,
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Optimizing the area The area of the rectangle can be expressed in terms of 6. Let

a(8) = (azcos 0+ a3 —da3 sin20) . (agsin 6++yai—a3 00520).

From (1) and (2) it follows that the area of the rectangle is A(6) =|a(8)| whenever
a(9) is real-valued. Note that we are not assuming that a, is the least of the distances
and that, because of the symmetry of the four curves in each part of Ficure 4, we can
restrict ourselves to Cy;.

Insight into where A(6) is optimal may be obtained by using Mathematica or
another computer algebra system to plot A(6), x(6), and y(6) on the same axes for
0<60<2m. These graphs show that A(8) is not necessarily largest when the
rectangle is a square, as our earlier experiments with The Geometer’s Sketchpad
indicated. In Ficure 5a (in which a; =7, a, = 3, and a; = 5) the extrema for the area

area area
7 Y
— L
0 0
T 2 T 2
(a) (b)
FIGURE 5

Extrema need not correspond to squares, which may not exist.

curve do not correspond to intersections of the x and y curves. In fact, the rectangle
may never become a square, as shown in Ficure 5b (in which a; =7, a, =1, and
az = 4), where the graphs of x and y do not intersect.

To optimize A(6), we first find and simplify a'(6).

/( 0) ( ay )
4(0) = .
\/a% — a? cos?0 \/ag — a3 sin%0

(cos 6y a3 — a3 sin®0 — sinfy/a; — a3 cos’d ) a(6).

The chain rule then gives

ay" (cos 60y a3 — a3 sin®0 — sinfy/a} — aj cosze)

\/a% — a2 cos®d \/ag — asin%0

A(6) = la(0)].

If a, exceeds either a; or a, there will be intervals in which A(6) and A'(8) are
not real valued. This is illustrated in Ficure 6 (in which a; = 5.5, a, =6, and a5 = 5).
However, the values of A(8) and the values of the one-sided derivatives A’, () at the
endpoints of each of these intervals agree. Hence, A(6) may be viewed as being a
differentiable function on the interval [0, 27r] minus the intervals where A(6) is not
real valued. Thus, the only critical points occur when cosfy/a3 —ajsin®0 =

sin6y/af — aj cos®0. This condition simplifies to tanf = +a;/a,. The negative is an

extraneous solution, so the only critical points of interest occur for 6 such that
tanf=a,/a. (3)
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—

g 2
FIGURE 6
Graph of A(9) is discontinuous if a, is greater than a; or a;.

If 0 < @ < arctan (ag/a,) then ay/y/a} + a3 <sin6 and cosf <a,/y/a} + a3 . This

observation implies that A'(8)>0 for 6 in (0,arctan(a;/a,)). Similar reasoning
shows that if arctan(ag/a,) < 6 < 7/2 then A'(6) is negative. Hence, if 6 satisfies
(3) and lies in the first quadrant, then the corresponding rectangle has maximum area.
Analogous arguments show that if 6 satisfies (3) and lies in the third quadrant, the
corresponding rectangle has minimum area.

To gain geometric insight into why the extrema occur when tan6 = a;/a,, construct
the auxiliary rectangle B, A, B; B, with Bj on the x-axis, B, on the y-axis, A, B; =a,,
and A, B, = a,. See Ficure 7. Then the angle between the positive x-axis and A, B,
is the same as the angle for which the area is maximum. Further, rectangle B, A, By B,
can be used to determine where P must be on I' for a rectangle to exist for a given
set of distances a;. In the first quadrant, P must lie on the arc of I' which is inside
B, Ay B3 B,. Outside the auxiliary rectangle, either PA; > a; or PA, > a,. Symmetric
conditions hold in the other quadrants. The condition tan6 = a;/a, for maximum area
can also be thought of as describing the angle for the limiting position of P as
ay— a3 +a} with a3 +a} fixed. In the special case of a,=0, the family of
rectangles has exactly four congruent members, corresponding to tan6 = +a,/a,.

The above discussion is summarized in the following theorem.

B,
B,(0, a3) T~

Ay Bs(a,,0)

FIGURE 7
P must be on the arc inside B; A, B;B,.
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Ay Ay

¢34

FIGURE 8
The angles around P.

THEOREM 2. If the distances a,, ay, a;, and a, satisfy Li_,(—1)a?=0 and
determine a family of rectangles as described above, then the rectangle with maximum
area occurs when the angle 0 is in the first quadrant and tan0 = a,/a,. The rectangle
with minimum area occurs when the angle 6 is in the third quadrant and
tanf=a,/a,.

Additional results are given as corollaries; proofs are left to the reader. Denote the
angles subtended from P by the sides of the rectangle by ¢,; =2 A,PA;.
See Ficure 8.

COROLLARY 2.1. When the area of the rectangle is maximum, ¢, + ¢Pgy =
bz + by = .

Question: What is the relationship among the ¢,; when the area is minimum?

COROLLARY 2.2. The maximum area is given by a,a; + aya,, and the minimum area
is given by layay—aya,l. Thus, any set {ay,ay,ay,a,} of distances from P to
consecutive vertices of a family of rectangles may be permuted, subject to L;_,(—1)'a}
= 0, without changing the maximum and minimum areas.

A second approach to finding these extrema is to use Lagrange multipliers. The
—_— = —
vectors A, P, PAg, and PA, can be combined to give

A, A=A, P+PA,; A,A =A,P+PA,.

Note that the (signed) area of the rectangle is the product of the first component of
— —
A, A, with the second component of A, A, and that both the second component of

Ay Ay and the first component of A, A| must be 0 since A; and A, are on the
coordinate axes. The problem becomes: Minimize

a( 0, dgs, Pr13) = (aycos 0 — agcos (0 + dys))(agsin 0+ asin (P, — 6)),
subject to the constraints
aysin 0 =aysin (0+ ¢pyy) and  aycos 0 =a cos (¢, —6).

Details are left to the readers (or their calculus classes).
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Counting Integer Triangles

NICHOLAS KRIER

BENNET MANVEL
Colorado State University
Ft. Collins, CO 80523-1874

Introduction How many triangles with integer sides have a given perimeter? This
elementary counting problem came up in a geometry class. As we soon found out, the
answer has been known for a long time. In rederiving that answer for ourselves we
found the Internet and Maple to be valuable tools. This note describes our experi-
ences in finding the number ¢, of congruence classes of triangles with integer sides
summing to n, which we will just call integer triangles.

Data stage Although we guessed that the answer to such a classical problem would
be known, we did not have a good idea where to look for it. So we began our attack on
the problem in the most primitive possible way, constructing small triangles. Obvi-
ously 1, 1,1 is the smallest integer triple for sides of a triangle, followed by 2,2, 1, then
2,2,2 and two triangles of perimeter 7: 3,2,2 and 3,3, 1. Continuing in this way, we
found one integer triangle of perimeter 8, three of perimeter 9, two of perimeter 10,
and four of perimeter 11.

These data suggested to us two possible integer sequences. One would list perime-
ters of all integer triangles, and begin 3,5,6,7,7,8,9,9,9,10,10,11,11,11,11. The
other would list the number of integer triangles of each perimeter, and so would begin
1,0,1,1,2,1,3,2,4. With these sequences in hand, we turned immediately to our
battered copy of N.J.A. Sloane’s classic Handbook of Integer Sequences. Unfortu-
nately, we came up empty. (We would not have come up empty if we had owned
the new Encyclopedia of Integer Sequences by N.J.A. Sloane and S. Plouffe.) So
we turned to our computer, submitting the sequence to Sloane (at AT&T Research)
by e-mail (address: sequences@research.att.com; subject: none; message:
lookup 1 0 1 1 2 1 3 2 4). We were quickly informed that the second of our
sequences was in fact Alcuin’s sequence, the coefficients in the power series expan-
sion of

x3

(1-x*)(1—-x3)(1—x*)"

(1)
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