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Introduction

San Francisco’s Exploratorium contains an intriguing exhibit of a square wheel that
rolls smoothly on a road made up of linked, inverted catenaries (see Ficure 4). That
exhibit inspired us to generate a computer animation of a rolling square and further
explore the relationship between the shapes of wheels and roads on which they roll.
In a sense, we are bringing up to date the paper by G. Robison [4], showing how
much more can be done, both numerically and graphically, with modern computer
hardware and software. The problem of the square wheel has been rediscovered and
solved several times; see [5, 7].

All the diagrams and animations were prepared in Mathematica. Our package that
generated the diagrams and the associated animations (see Section 5) can be obtained
by sending a Macintosh disk to one of the authors. It is noteworthy that some of the
results of this paper, in particular the discovery of a cycloidal locus generated by a
noncircular wheel, were discovered only after viewing certain graphics. Mathematica
was also used to do all the symbolic integrations that occur. For further applications
of symbolic and graphic computation to wheel /road problems, in particular, a
complete discussion of the cycloid, see [6, Chapter 2].

The paper is organized as follows. Section 1 discusses the theory and the funda-
mental differential equation. Section 2 contains many closed-form examples. Section 3
shows how numerically approximating the solution to the differential equation is an
excellent approach to diverse examples, even those solvable in closed form. Section 4
squares the circle by considering Fourier approximations to the catenary. And Section
5 discusses the Mathematica package that we built.

1. Building a wheel

Suppose we are given a road in the form of a rectifiable curve in the lower half-plane
parametrized by f(t) = (x(t), y(t)), where x(t) is increasing, x(0) =0, y(¢) <0. By
the wheel corresponding to the road we mean a curve that will roll smoothly on the
road. More precisely, a wheel will be a curve given by a polar function r =r(8) such
that the axle of the wheel, which initially is at (0, 0), stays on the x-axis directly above
the wheel-road contact point as the curve rolls along the road. The wheel’s axle may
or may not coincide with the wheel’s geometric center. The road is assumed to
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provide enough friction so that there is never any slipping of the wheel. The rolling
motion can be described by a function 8 = 6(¢) that describes the amount of angular

rotation for the wheel to roll from f(0) to f(¢). These functions must satisfy the
following conditions (see Ficure 1):

1. Initial condition. The initial contact point is at f(0), directly under the origin,
whence 6(0) = —7 /2.

2. Rolling condition. The amount unravelled on the wheel matches the distance
travelled on the road: For any ¢, the arc length of f between f(0) and f(t) equals
the arc length of the polar curve between 8(0) and 6(¢).

3. Radius condition. The radius of the wheel matches the depth of the road at the
corresponding point: For any ¢, r(8(¢)) = —y(t).

Ficure 1 illustrates the formation of the wheel in the case when the road is given
as y = f(x), with f(x) nonpositive, in which case the conditions simplify accordingly
(that is, x can be used as the parameter, and so 8 becomes a function of x).

| r=r6(x)

FIGURE 1
If a road is given by y =f(x), then the relationship between 6 and x is obtained from the
equality of the arc lengths AB and AC and of the radius vector OC and the depth of the road
(dashed lines). The road illustrated is given by y= — V17 + cos x, where V17 has been

chosen so that the wheel closes up on itself (see Remark 5).

The key to getting a wheel is finding the function 6(t), since the radius condition
will then yield r(6). The first two conditions become a simple differential equation,
which can lead to either a closed-form description of 6 or a numerical approximation.

The rolling condition is:
dy 2 o(t) 2 dr \2
E) dt=f r(6) +(%) do
—7/2

Differentiating both sides with respect to ¢ and squaring yields:

() () = () o+ () )

Now substitute ;lo ili(: dy (obtained by differentiating the radius condition) to

| )+ (3 vt 2]+ (2
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which simplifies to:

do_  de 1
dt — —dt —y(t)’
Because d@/dt is to be positive, the differential equation we seek is:
do _ _ds
dt — dt y(t)’

with initial condition 6(0) = — /2.
Remarks.

1. If the road is given by y =f(x), the differential equation for 6 becomes simply
d6/dx = —1/f(x). In this case

™

x —1
0(x)=/0mdx—§.

2. If the function 6(t) can be inverted to #(#) then the wheel is given by the polar
equation r = —y(#(9)).

3. An alternative approach to characterizing 6(t) proceeds by matching slopes instead
of arc lengths. The rolling condition then becomes: For any t, the slope of the road
at f(t) equals the slope of the tangent to the polar curve at 6(t), rotated clockwise
through 6(t) + 7 /2 radians. This leads to the same differential equation.

4. The inverse problem starts with r(8), a polar representation of a wheel, and seeks
the appropriate road. The preceding discussion implies that the road is given by
y(x) = —r(6(x)), where 0 satisfies 8(0) = —7/2 and d6/dx =1/r(8). One can
also deal with the case that the wheel is given parametrically by (x(¢), y(t)); see
Case 4 in Section 3.

5. Suppose the road y=f(x) is periodic with period a. Then the corresponding
wheel does not necessarily close up on itself to form a topological disk (see Ficure
2). The condition for such closure—the closed-wheel condition—is that there
exists a rational number r so that 27rr = 6(a) — 6(0) = [ — 1/f(x) dx. If r=1/n,
n a positive integer, then the wheel rolls over n periods of the road during each
complete revolution. As an example, consider the road given by y =d + cos x,

FIGURE 2
The wheel for a cosine road given by —3.5 + cos x winds around endlessly without closing up,

because 3.5 is not one of the special values V1 + n?. This wheel was generated by the
numerical technique discussed in Section 3.
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where d < — 1. For each positive integer n, there is a unique value of d, which
turns out to be — V1 + n?, for which the wheel closes up into one that covers n
periods per revolution. (See Ficure 1 for the n =4 case and Ficure 13 for the
n =1 case.) To see that the values of d in the cosine case are as claimed, observe
that [f™—1/(d + cos x) dx = 2w/ Vd? — 1. It is easiest to integrate from 0 to
and then double. More generally, the road y =d + b cos(cx) yields a closed wheel
that covers n periods when d = — yb*+n?/c?. Cycloid roads and inverted
cycloid roads provide two more examples in which the closed-wheel condition
integral can be evaluated (see Ficure 9(c) for the n =0 case, and Ficure 19(d)
for a fractional example, viz., n = 1/2). The closed-wheel condition has a com-
pletely analogous form in the case of a parametrically defined road as well; see the
cycloid example in Case 3 of Section 3.

2. Closed-form solutions

This section discusses several examples for which the differential equation can be
solved in closed form. It is remarkable that, although the arc length of familiar curves
is generally not solvable in closed form, the wheel-road problem is solvable for a
wide variety of functions.

Polygonal wheels The roads corresponding to polygonal wheels are derived from
the case of a wheel that is nothing more than a straight line. Consider the polar
equation r = —csc 0, —7 < 6 <0, whose graph is a horizontal line one unit below
the x-axis. The results of Section 1 show that the road on which this polar line will
roll is given by y = f(x) = —r(8(x)) where 6(0) = —7 /2 and

o _ v _ 1 _
&~ =y(x) ~ r(6(x))

The solution to this initial-value problem is x = —log(—tan(6/2)), or 6=
—2arctan ¢ . Hence the road is given by:

—sin 0.

y=f(x)=csc(—2arctane ")
_ -1 _ -1
~ sin(2arctan e *)  2sin(arctan e *)cos(arctan e ")

_ 1+e 2 _ _e"'+e_“'
2¢* 2

= —cosh x,

whose graph is an inverted catenary. This means that the polar line will roll on the
catenary so that the polar origin, which we imagine as attached to the line, stays on
the x-axis.

Modifying the straight-line example yields roads for wheels that are regular
polygons. Consider the square wheel. By simply truncating the catenary where its
slope is +1—this occurs at x = +arcsinh l1—and forming a periodic road by
translating copies of the truncated catenary, the angle at the junctions will be 90°
Hence a square will smoothly pass over the junction. Ficure 4 shows several images
from an animation of a rolling square on such a road, along with the locus of a vertex,
which is related to the involute of the catenary.

The road appropriate for a regular n-gon may also be obtained from the catenary
y = —cosh x. If the catenary is truncated at x = +arcsinh[tan(s /n)] then the angle
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at the road’s cusp matches the interior angle of the n-gon, and the amount of rotation
to get the wheel into the cusp is 8(x) + 7 /2. This works out to be exactly 21 /n (the
details, which involve a horrendous-looking identity involving tan, arcsinh, and arctan,
are left to the reader). So the wheel corresponding to the road made of pieces of
inverted catenaries closes up exactly into a regular n-gon. The case of a triangle is
noteworthy in that the rolling cannot happen physically: Because the cusp angle is
less than 90°, the triangle will crash into the road before the vertex gets into the cusp

(Ficure 5).

r=—-1226 x=-0522 x=0 r=0522 x=1226 xr =334
0=-257 6=-207 6=-m/2 6=-107 6=-057 6=-0.07

FIGURE 3
Some stills from an animation showing the polar line r = —csc 8, —m < 6 <0, rolling over the
catenary y = —cosh x. The x-values and #-values correspond to the x-coordinate of the point

of tangency and the 8-value of the point of tangency viewed as a point on the polar line. Adding
7 /2 to the f-value yields the amount of rotation of the horizontal line.

FIGURE 4
A road made up of pieces of an inverted catenary allows a square to roll smoothly. The dots are
the locus of a vertex during the rolling. Note that the slope of the tangent to the locus has a
discontinuity at the cusp.

FIGURE 5

A vertex of a rolling triangle crashes into the road just before the vertex arrives at the cusp. The
rightmost diagram is a close-up of the collision.
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As we shall see several times in this paper, the depth of a road plays a crucial role
in determining the shape of the wheel. If the catenary road y = —cosh x is raised or
lowered, the shape of the wheel changes. Consider the family of roads k — cosh x
where k < 1. If k =0, then the wheel is a straight line, but other values of k yield
radically different wheels, as shown in Ficure 6. The closed-form solution, obtained
with the help of Mathematica’s integrator, is given by 6(x) = ¢(x) — H(0) + 7 /2
where

-2 arctan( e_i )

V1-—k?

d(x) = \/1——k—2-

10 10 4
75
75
5

roads: y = —1 — coshx 0.9 — cosh x 0.7 — cosh x 0.676454 — cosh x

FIGURE 6
Raising or lowering a catenary road via k — cosh x leads to a variety of wheel shapes. Only the
choice k = 0 leads to a straight-line wheel. The wheel in the last case has vertical asymptotes.

Tilted roads Let f(x)= —1—x,x > 0, define a downward-sloping road. The solu-
tion to the initial-value problem for 6 is then 8(x) = log(x + 1) — 7 /2. Therefore the
wheel for this oblique line is the equiangular spiral 7(0) =1+ exp(8 + 7/2) — 1 =
exp(6 + 7 /2), which is shown in Ficurr 7. In the general case that the road is given
by —1 — mx, the wheel is the spiral given by r = expl(0 + 7 /2)/m].

As with the catenary, we can turn the 45° road into a periodic function, in this case
a sawtooth. In order to get a smoothly rolling wheel that covers four teeth of the road
in one revolution, we need to find x such that 8(x) = —7/4: 6(x) = —7 /4 if and
only iflog(x + 1) — /2= —m/4 if and only if x =™/ —1=1.19... . Now we can
cut off the straight line at this point, generate a sawtooth road, and paste appropri-
ately truncated pieces of the spiral together at right angles to get the sawtooth wheel
shown in Ficure 8. The pasting yields 90° angles because the tangent to the
equiangular spiral makes a constant 45° angle with the radius vector; these angles
plus their mirror images yield the right angles. A wheel that covers more teeth during
each revolution can be obtained by truncating the line at a value of x that satisfies
0(x) = — /n and pasting together more and shorter pieces of the spiral.
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SKSS

FIGURE 7
An exponential, or equiangular, spiral rolling along a tilted line.

FIGURE 8
Pieces of an equiangular spiral can be pasted together to get a wheel that rolls on a sawtooth
road. The examples shown cover four and five teeth per revolution, respectively.

Cycloidal roads The cycloid is the famous curve that is the path of a point on a
traditional round wheel rolling on a straight road; inverting the cycloid leads to the
parametric curve f(t) =(#—sint,cost — 1). The wheel that rolls on an inverted
cycloid can be found by solving the differential equation d6/dt =(—1+ cost)/
(cost—1)= +1, so 6(¢) is simply ¢t — /2. Hence the wheel is given in polar form
by r= —y(#(6)) =1 — cos(6 + 7 /2) = 1 + sin 0, the polar form of a cardioid (Ficure
9(a)). The cusp of the cardioid rolls over the cusp of the cycloid, at least in theory. In
practice, there is a crash between the road and the cardioid, similar to the one that
happens with a rolling triangle (Ficure 5). As pointed out by Robison, a physical
model can be built so as to avoid the cusp problem by introducing pieces of a
catenary into the road and a straight line segment into the wheel so as to bypass the
cusps. See [4, Ficure 4] for details.

The locus of the top point of the cardioid seems to have the same general shape as
a cycloid. As an exercise, the reader can verify that, indeed, this locus is a cycloid
stretched vertically by a factor of 2. As further exercise, the reader can investigate the
clover-like wheels that arise from lowering the cycloid so that the closed-wheel
condition is met. The case of (¢ —sint, —13/5 — cos t) is illustrated in Ficure 9(b).
One can also consider the uninverted cycloid that is tangent to the x-axis from below
— (¢t —sint, —1 — cos t) — for which the wheel is derived from the function:

2sin x i
0(x) = —x+ 1+cosx 2°

This leads to a spiral wheel that requires infinitely many revolutions to pass over the
cycloid’s high point (Ficure 9(c)). Cycloidal roads are discussed further in Case 3 of
Section 3.
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)]

7

()

FIGURE 9
(a). A cardioid rolls on an inverted cycloid, and the locus of the point opposite the cardiod’s
cusp is a vertically scaled cycloid. The close-up view shows that, in actuality, a cardioid-shaped
tire would be punctured by the cycloid’s cusp. (b) Lowering the cycloid leads to the
clover-shaped wheels. (¢) A right-side-up cycloid touching the x-axis yields a wheel that takes
infinitely many revolutions to pass over the cycloid’s high point.

It turns out to be worth considering more general cycloidal roads, such as
trochoidal roads represented by (¢t —asint, —1 + a cost). The usual computations
show that the wheel is given by r = 1 + a sin 6, a limagon that, when a = 1, is the just
discussed cardioid. This limagon intersects the positive y-axis at (0, + 1), points
whose loci during the rolling are (¢ + sint,(a + 1)cost). These loci are cycloids
stretched in the y-direction. Note that there are two cases in which the stretching
constant is 1—that is, the locus is an exact cycloid: The classical case a =0, with

FIGURE 10
Rolling a limagon along a trochoid yields an exact cycloidal locus.
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straight road and round wheel, and the case when a =2 (or —2), where the road is a
trochoid, the wheel is a limacon, and the locus of the top of the inner loop is an exact
inverted cycloid (Ficure 10). Are these the only two examples of road-wheel
combinations for which a point on the wheel traces out an exact cycloid?

A road that is its own wheel Can there be a road for which the corresponding
wheel is congruent to the road and for which the rolling motion matches points that
correspond under the congruence? Consider the road that is given by the parabola
y= —x2—1/4. The differential equation yielding 6(x) is then df/dx=1/(x*+
1/4), for which the solution is 6(x) = 2arctan(2x) — /2, or x =1/2tan(mr/4 +
6/2). The polar wheel then has the form r(0)= —y(x(6)), which simplifies to
r=1/(2 — 2sin ). This last is the graph of the parabola y =x2 — 1/4, which is the
reflection of the road in the line y = —1/4. Ficure 11 shows this singular situation
of a wheel rolling on itself. We leave the verification that corresponding points touch
as an exercise. Robison [4] showed that this parabola is the only curve that has this
property.

Note that raising or lowering the parabola changes the shape of the wheel
dramatically (see Ficure 11).

4
9 2
2 4
1 2 1 2
road: y = —x2—1; road: y = —x2— 1 road: y = —x2 -1
wheel: y =x2 -1
FIGURE 11

The wheel corresponding to the parabolic road given by —x%— } is simply a reflection of the

road itself. But the wheels for other parabolic roads are not parabolic.

Round wheels can roll on round roads A well-known puzzle can be interpreted as
follows: What is the wheel corresponding to a road that is an upward-opening
semicircle whose highest points'are on the x-axis? Such a road is given by f(t)=
(cost,sint), m <t < 2. The differential equation for 6(¢) is simply d@/dt =1, so
6t)=t—mw/2 and r(0)= —sin(@ +7/2)= —cos@, m/2<60<37w/2. Thus the
wheel is a polar circle with geometrical center at (—1/2,0). The aforementioned
puzzle is the one that asks for the locus of a point on the circumference of a circle that
is rolling in a way tangent to the interior of a circle twice as large. The locus is a
straight line, which shows itself in Ficure 12 as the vertical lines in the arch-shaped
locus.
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@\

FIGURE 12
A circle rolls on inverted semicircle. The dotted paths are the loci of two points in the wheel’s
circumference.

Off-centered elliptical wheels Consider the ellipse given in polar form by r =ke/
(1 — £sin 0), where 0 <& <1 andk > 0; the origin, which corresponds to the axle of
the wheel as it rolls, is one focus of the ellipse, the other focus is on the positive
y-axis, ¢ is the eccentricity, and k is the distance from the origin to the corresponding
directrix. Such an elliptical wheel rolls on the road y = —(ke/a*)X1 — & cos(cx)),
where ¢ =a/ke and a = V1 — 2. The derivation of this is slightly complex. Here’s a
sketch: ’

1. Solve the initial-value problem to get

2 arctan t_ar}Q_/_2);e + arctan( 1te )
2ke a a

2. Take the tangent of the relationship in (1) and use some trig formulas to get

l+e 1—cos®(cx)  l+sind
1-e (1 + cos(ex))® 1—sing"

3. Solve the preceding for sin 6, substitute into

—ke
y(x) = 1—gsinf(x)’

and simplify to get the desired representation of the road as (ke /a?)(1 — & cos(cx)).

If we set k=1and £ =1/V2 then the road is just y = — V2 + cos x (see Ficure
13); this is a special case of one of the proper depths to lower the cosine so as to get a
closed wheel (see Remark 5 in §1).

FIGURE 13
An ellipse rolls on a cosine curve. In the example shown the road is given by y = — V2 + cos x
and the ellipse has the polar form r=1/(y2 — sin 6).
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Centered elliptical wheels The preceding example involved an off-center elliptical
wheel; that is, the axle is not at the ellipse’s center. Let’'s now find the road on which
an ellipse with centered axle will roll. The ellipse (x/a)* + (y/b)* = 1 has the polar
representation 7 =b/V1 —mcos® 0, where m abbreviates 1 —b?/a®; in this repre-
sentation the polar center—the axle of the wheel—coincides with the center of the
ellipse. We can find the appropriate road by first finding the relationship between x
and ; the differential equation for 6 separates to V1 —m cos®> 0 d6 = (1,/b) dx and
the initial condition then leads to:

0(x)
f—‘rr/2 V1 — m cos> /0
Substituting ¢ = ¢ + 7 /2 yields sin ¢ = cos # and

0 V1—msin® ¢ b

Now this is an incomplete elliptic integral of the first kind [1, 17.2.2, 17.2.17].
Therefore x/b = F(0 + 7 /2|m), which can be inverted by using what is known as
the Jacobian elliptic function sn: sin(f + 7 /2) = sn(x /b, m). The road is therefore
given by y= —r(0(x)= —b/ \/1 —msn®(x/b,m) . The sn function is built into
Mathematica, and so it is a simple matter to generate a diagram of the road and
wheel. But some complications arise when one tries to use the closed form to
generate an animation; they can be worked around by adding multiples of 7 /2 as x
increases through the quarter-period value. But life is much simpler if we use the
numerical approach of the next section to generate the animation. It is easiest to start
with the ellipse and use the Case 2 discussion, as that avoids the computation of
values of sn. The result of one such computation is shown in Ficure 14 (a =1/2,
b = 1, eccentricity = 0.87). Ellipses with eccentricities greater than about 0.97 lead to
a road-wheel crash similar to the one for the triangle (Ficure 5).

f@(x)+‘n’/2 diy x

FIGURE 14
Four frames from an animation showing an elliptical wheel (a = £, b = 1) with its axle at its
center rolling on a road defined using the elliptic sine function.

An elliptical road We can consider bounded roads as well as roads that protrude
above the x-axis. As one example, consider the ellipse given parametrically by
(asint, —b cos t), where a and b are positive. The closed-wheel integral is 2ma/b,
and integer values of b/a lead to closed wheels that are familiar curves. The usual
calculation shows that ¢(8) is just (b/a)X6 + 7 /2), whence the wheel’s polar form is
r(8) = —y(t) =b cos[(b/a)6 + 7 /2)], a polar rose (Ficure 15(a)). The locus here
was a surprise to us as it turns out to be a piriform, which we had considered earlier
in another context (§3, Case 4). If b/a is rational then the wheel is a rosette, as

defined by Hall [2].
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(a) (b)

FIGURE 15
(2). A four-leafed rose rolls inside the ellipse (3 sin ¢, — cos ), and the locus of the tip of a petal
is a piriform. (b) The wheels corresponding to more general ellipses [shown here is
(3sin ¢, —2cos t)] are rosettes.

Vertical scaling We have seen in some of the preceding examples that raising or
lowering the road usually changes the wheel significantly, and may destroy the
closed-wheel condition. Another way to change the road is by scaling the y-coordi-
nate: y = f(x) becomes y =kf(x), and x =f,(t), y =f,(t) becomes x =f,(t), y =
kf(¢). The closed-wheel condition is affected as follows.

1. If the a-periodic road y = f(x) has a closed wheel, then so does y = kf(x) for any
positive rational scaling factor k.

2. If the a-periodic road y = f(x) does not have a closed wheel, the scaled road
y = kf(x) does have a closed wheel whenever k is a rational multiple of

fa —1
2mf(x)
Similar results hold for roads defined parametrically.

As an example of scaling, consider the road y = (cos x) —b, b > 1. The scale factor

1/Vb?— 1 produces a closed wheel. Note that the scale factor goes to zero as b goes
to infinity, and that the scaled road approaches y = —1. Since the wheels for these
roads are ellipses, larger values of b correspond to wheels with smaller eccentricity.

FIGURE 16
A scaled cycloidal road has a cuspitate rosette as its wheel.
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Another case where scaling gives interesting road—wheel pairs is an inverted cycloid:
x=t+sint, y=k(—1—cost). Assume k is a positive rational. Then the wheel is
given by r(8) =k(1 + cos[k8 + k7 /2]). For k a positive integer these wheels are
cuspitate rosettes, curves similar in appearance to standard polar roses, but having
cusps at their center. For more about cuspitate rosettes see [2] and the references
therein.

Summary of some road-wheel relationships Here is a summary of road-wheel
relationships including some not in closed form (12, 13) and some whose derivations
are left as an exercise for the reader (14, 15, 16).

Wheel Form of Road Locus
1. Straight line Catenary
2. Regular polygons Piecewise catenaries
3. Circle Horizontal line Cycloid /Trochoid
4. Circle, axle on circumference Circle, radius doubled Circular arch
5. Equiangular spiral Oblique line
6. Piecewise equiangular spiral Sawtooth
7. Ellipse, axle at focus Cosine
8. Ellipse, axle at center 1/y 1 — (elliptic sine)2
9. Parabola (x2 — 1/4) Parabola (—x2 —1/4)
10. Cardioid; see Ficure 9(a) Inverted cycloid Scaled cycloid
11. Spirals, clovers; see Ficure 9(b, ¢) Lowered inverted cycloids
12. Pointed wheels; see Ficure 19 Lowered cycloids
13. Piriform See Ficure 20
14. Hippopede See Ficure 18
15. Roses, rosettes Ellipses Piriform
16. Limagon Trochoid Cycloid
17. Hyperbolic spiral [r = 1/(0 + )] Exponential [y = —(2/m)e "]
18. Cuspitate rosettes Scaled cycloids

3. Generating solutions numerically

As we demonstrated in the last section, surprisingly many road—wheel problems are
solvable in closed form. When one deals with arc length, however, functions that are
not integrable in terms of elementary functions eventually show up. In this section we
describe how to generate plots of roads and wheels numerically. Our procedures will
be described for Mathematica, but the methods, with the possible exception of the
animations, could be adapted to other software with graphics capabilities. What is
needed is the ability to apply a numerical differential equation algorithm and plot
points and lines.

The key step, as we have seen, is to solve the initial-value problem relating the
road parameter and the polar angle. The differential equation involved is separable,
but the resulting integrations can be daunting, even when feasible. Furthermore, we
have often found this closed-form approach too slow to generate plots of the roads and
wheels. A more efficient method is to solve the initial-value problem numerically
using a standard Runge—Kutta algorithm; then a set of points defining the wheel or
road can be generated with the help of the radius condition. The points are joined by
lines to get the final image. The relationship between the road parameter and the
polar angle is almost always nonlinear (an exception: a circular wheel rolling on a
straight road), which means that constant velocity and constant angular velocity
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cannot be achieved simultaneously. The use of a fixed step-size in the numerical
method can guarantee that, in an animation, one of these velocities is constant.

When animating one of these wheels rolling along its road, the relation between
the polar angle 6 and the horizontal coordinate x must be known. The rolling can be
broken down into two parts: a rotation, given by the change in 6, and a translation,
given by the corresponding change in x.

There are four cases to consider. Some stripped-down code for Case 1, the simplest
case, is given in Section 5.

Case 1. Suppose the road is given by y =f(x) and we want to generate the wheel.
The initial-value problem is d6/dx= —1/f(x), 6(0) = —m /2. The Runge—Kutta
method generates a table of ordered pairs (x, ). This table and the radius condition
are used to produce the wheel.

Example. Let y= —1.887365 — (2/3) cos x + sin x — (1/2)sin 2x, where the con-
stant term has been chosen so that the closed-wheel condition holds for one
revolution per period. The wheel (Ficure 17) is generated by using a Runge—Kutta
method to solve the initial-value problem, taking the independent variable to be x.
Thus, when animated, this wheel’s axle moves with constant linear velocity. This
example shows that wheels need not have an axis of symmetry.

0
3m/2

T

T/2

.......

/2

FIGURE 17
This example shows that the angular speed during rolling can vary a lot. The wheel rotates
quickly when it is above the high bumps in the road, as illustrated by the steepness in the 6 vs.
x plot.

Case 2. Suppose the wheel is given by r = g(6) and we want to generate the road.
The initial-value problem is dx/d@ = g(6), x(—m/2) = 0. This time the numerical
method gives pairs (6, x), and the road can be generated using the radius condition.

Example. Let r =4V5 — 4sin® 0 , a polar curve called a hippopede (see [3]). Again,
Runge—Kutta is used to solve the initial-value problem, but this time it is convenient
to take 0 as the independent variable. Thus, when animated, the wheel (Ficure 18)
would exhibit constant angular velocity.

FIGURE 18
The example of a hippopedal wheel illustrates the case that the wheel is given in polar form
and the road is found numerically.
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Case 3. Suppose the road is given parametrically by x =f,(t), y =f,(t), where
f1(0) = 0. Now the initial-value problem relates the parameter ¢t and the polar angle
0, and reduces to d6/dt= —f(t)/f,(¢), 6(0)= —m /2. This time the numerical
solution gives ordered pairs (¢, ), and the radius condition can be used to produce
the wheel, very much as in Case 1.

Example. Let the road be a cycloid, lowered sufficiently so the closed-wheel
condition (with an integer number, n, of periods per revolution) holds, and translated
so the y-axis bisects one arch. The parametric equations are x =t -+ sint, y =
cos(t) — d,. For this cycloid, the closed-wheel condition is

T 1+ cost T
f T —cost dt = —
o &, —cost n

for which the positive solutions are d, =1+ 2n?/(2n + 1). (One could also consider
negative solutions: d; = —1 vyields a road with a cardioid wheel similar to that in
Ficugre 9.) Using the table of (¢, ) values obtained with the Runge-Kutta algorithm,
and the radius condition, we get the wheels corresponding to different periods (see
Ficure 19). In this case both x and 6 are given as functions of the parameter ¢, so in
an animation neither will increase linearly. Ficure 19 also shows the case of a
period-1/2 roller; that is, n=1/2, d= li and the wheel rotates twice for each
period of the cycloid. For the n =0 case (infinitely many revolutions) see Ficure

9(c).

Case 4. Suppose the wheel is given parametrically by x = g,(¢), y = g,(#). In order
to get a simple closed wheel, assume g, and g, are periodic with the same period. In
terms of g, and g,, the initial-value problem relating the x-coordinate of the road
with the parameter ¢ is:

de _ &(1) g5(t) — i(?) 85(1)

@x _ 0)=0
dt 2 2 ’ x( ’

\/gl(t) +2,(1)
The numerical method produces pairs (¢,x), and if care is taken to use the same
t-values, the corresponding coordinates of the road are found from the radius
condition to be given by: y(t) = — \/gl(t)2 +2,(1)°.

To generate an animation of this case, we must also have the polar angle 6 in terms
of t. Unfortunately, there are complications involving branches of the arctangent
function that prevent the direct use of 6 = arctan[g,(¢)/g,(¢)], so we generate
another table of values, this time (¢, 8), by applying Runge-Kutta to:

dx _ g:(1) &5(t) — gi(t) 8,5(t)
di ‘/gl(t)2+g2(t)2

T
. 0(0)=—-75,

again being careful to use the same t-values as were used to generate the (¢, x) pairs.
Together, the (¢, x) pairs and the (¢, 8) pairs define a set of (x, ) pairs that can be
used to animate the wheel.

Example. Let the wheel be defined by x = —sint + (1/2)sin2¢, y = —cos t. This
shape (Ficure 20) is known as a piriform (again, see [3]). As in the example for Case
3, neither linear velocity nor angular velocity will be constant in an animation.
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o=

n=

FIGURE 19
Some wheels corresponding to a cycloidal road. These wheels can be given in closed form, but
when generating images or animations it is much more convenient to ignore the closed form
and just use the numerical approach. The top wheel covers one cycloid period during each
revolution; the next covers two; the next covers four. The bottom wheel covers a half-period of
the road during each revolution and corresponds to n = 4 in the closed-wheel condition.

FIGURE 20
The piriform is an example of a parametrically given wheel. Its road is found, as in the other
cases, by numerically solving the appropriate initial-value problem.
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Remark. In all four cases, the choice of independent variable in the Runge—Kutta
step is arbitrary. If an animation is planned, then this choice can be made to cause a
particular quantity, usually x or 6, to change linearly in the animation.

4. Squaring the circle with Fourier series

A natural thought when dealing with periodic functions, such as the roads for closed
wheels, is to look at the Fourier series. For wheels with an axis of symmetry through
the axle, we can make the periodic function even, thus yielding a cosine series. The
question then arises as to what shape the wheels for the various Fourier approxima-
tions will have. Clearly, for the approximation using only the constant term, the wheel
will be a circle and, as the Fourier series more closely approximates the road, the
wheels for the Fourier approximations will more closely approximate the original
wheel. Thus if we begin with the road for a rolling square, the wheel for the Fourier
approximations will “square the circle.” Obviously, we are not restricting ourselves to
Euclidean tools! There is one problem with this process, however: The Fourier
approximations fail to satisfy the closed-wheel condition.

For example, suppose p(x) = cosx — V5, which is a finite Fourier series already
with period 27, satisfying the closed-wheel condition. The constant term or Oth
Fourier approximation, is py(x) = — V5, and so V5 is the radius of the corresponding
wheel (a circle). It was shown earlier that the wheel for p(x) traverses two periods of
the road in one revolution, so the circumference of the circular wheel must be 4
(taking the period of the constant function the same as that of p(x)). But this makes
the radius of the wheel equal to 2, a contradiction.

The case when p(x) is the road for a square wheel is similar. Here, the circular
wheel that rolls on the Oth Fourier approximation has circumference 7.12866 instead
of 8 arcsinh 1 = 7.05099. And the closed-wheel condition fails here by 0.00138 for the
two-term Fourier approximation road. Of course, as the trigonometric polynomials
more closely approximate the original road, they will also come closer to satisfying the
closed-wheel condition, but the condition fails nevertheless for each Fourier approxi-
mation.

What is needed, then, is a sequence of approximations, each satisfying the same
closed-wheel condition as the road, which converges to the road. Such a sequence can
be constructed by exploiting the orthogonality of the cosine functions in a Fourier
series, along with the fact that the closed-wheel condition involves the reciprocal of
the road function.

Road approximations having closed wheels Let p(x) be a continuous, even,
negative, periodic function with period T. Then q(x)=1/p(x) is also continuous,
even, negative, and T-periodic, and so can be expanded in a Fourier cosine series.
Denote the partial sums of the Fourier series for q(x’) by q,(x), n=0,1,2,.... The
q,’s converge to g, are continuous, even, T-periodic, and, for large enough n,
negative. If, in addition, we assume that the derivative of q is piecewise continuous,
the convergence is uniform. Finally, we shall assume that g is “nice enough” so that
all the g,’s are negative, which is the case in all our examples. We now form the
sequence {p,(x)}, where p (x)=1/q,(x), which converges uniformly to p(x), and
we shall use this sequence to approximate the road. The p,’s have the same period as
p and satisfy the same closed-wheel condition because
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T/2 dx T/2
_ - _ dr,
/—T/Z Pa(x) '[—T/2 9,(x) dx

and, because the definite integrals of the cosines in the Fourier series vanish,

T/2 T/2 T/2 dx
- dx = - dx = - .
'[—T/2 9n(x) dx ’[—T/2 q(x) dx f—T/z p(x)

Approximations to the square wheel Recall that the road for a square wheel with
side 2 is the periodic extension of y = —cosh x, for —arcsinh 1 <x < arcsinh 1. The
first seven Fourier coefficients for the reciprocal are: —0.891107, —0.12537,
0.0230828, —0.0100959, 0.0056363, —0.00359458, 0.00249146. These were found
using the standard formulas and integrating numerically. The first three approxima-
tions to the road are:

po(x) = —1.1222
py(x) = 1/(—0.891107 — 0.12537 cos(3.56443x )
py(x) = 1/( —0.891107 — 0.12537 cos(3.56443x ) + 0.0230828 cos(7.128861))

For the wheel corresponding to the approximation p,(x), the polar angle as a
function of x is described by the initial-value problem d6/dx = —1/p,(x), 6(0) =
— /2. This can be integrated in closed form since —1/p,;(x) is a trigonometric
polynomial, but the numerical method described in Section 3 is more efficient,
especially for producing animations.

Ficure 21 shows two corresponding positions of the road-wheel pairs for p,(x),
p(x), po(x), and p(x). Note how the circle becomes square-like very quickly.

FIGURE 21
Approximating a catenary road with partial sums of its Fourier series yields wheels that
transform a circle to a square.

5. A Mathematica wheel-building package

We have written a complete Mathematica package (version 1.2) that generates roads
from wheels and vice versa. The package has options by which the user can generate
stills or animations, with or without a locus, spokes, shading, and so on. The notebook
can be obtained by sending a Macintosh disk to one of the authors. We include here a
bare-bones version of the routine to give some idea of how such a program is written.
This routine takes a function defining a road and displays the road and the wheel with
its axle at the origin.
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Even when a closed-form solution is available, it is often simpler to generate a
diagram or animation by taking a numerical approach. Nevertheless, sometimes the
closed form must be used. For example, rolling polygons are best generated directly,
without numerical approximations. Some code for doing so can be found in the
Appendix to [6].

RoadMovielfunc_, {x_, xmax_}] := Modulel{thetal, thetal,
thetallx_1 = thetalx1 /.

First @NDSolvel
{theta' [x] == =-1/func, thetalO] == -Pi/2},
thetalxl, {x, 0, xmax)}, PrecisionGoal=->21];

ParametricPlot[{-func {Cos[theta1llx]], Sinltheta1lxJ11}, {x, func}},
{x, 0, xmax), PlotRange->All, AspectRatio->Automaticl 1]

For example, RoadMovie[Cos[x1-SqrtL101, {x, 6 Pi}] will generate
the period-3 closed wheel for a cosine road (similar to Ficure 2, but with n = 3).
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If you ask mathematicians what they do, you always
get the same answer. ' They think. They think about
difficult and unusual problems. They do not think
about ordinary problems: they just write down the
answers.
M. Egrafov (translated from Russian),
contributed by the late R.P. Boas, Jr.



